Adenosine 5'-Triphosphate Synthesis Driven by a Protonmotive Force in Membrane Vesicles of *Escherichia coli*

TOMOFUSA TSUCHIYA

Department of Biological Chemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201

Received for publication 13 September 1976

Adenosine 5'-triphosphate (ATP) synthesis energized by an artificially imposed protonmotive force \((\Delta p)\) in adenosine 5'-diphosphate-loaded membrane vesicles of *Escherichia coli* was investigated. The protonmotive force is composed of an artificially imposed pH gradient \((\Delta pH)\) or membrane potential \((\Delta \psi)\), or both. A \(\Delta p\) was established by a rapid alteration of the pH of the assay medium. A \(\Delta \psi\) was created by the establishment of diffusion potential of \(K^+\) in the presence of valinomycin. The maximal amount of ATP synthesized was 0.4 to 0.5 nmol/mg of membrane protein when energized by a \(\Delta p\) and 0.2 to 0.3 nmol/mg of membrane protein when \(\Delta \psi\) was imposed. Simultaneous imposition of both a \(\Delta p\) and \(\Delta \psi\) resulted in the formation of greater amounts of ATP (0.8 nmol/mg of membrane protein) than with either alone. The amount of ATP synthesized was roughly proportional to the magnitude of the artificially imposed \(\Delta p\). Although \(p\)-chloromercuribenzoate, 2-heptyl-4-hydroxyquinoline-N-oxide, or NaCN each inhibits oxidation of \(\alpha\)-lactate, and thus oxidative phosphorylation, none inhibited ATP synthesis driven by an artificially imposed \(\Delta p\). Membrane vesicles prepared from *uncA* or *uncB* strains, which are defective in oxidative phosphorylation, likewise were unable to catalyze ATP synthesis when energy was supplied by an artificially imposed \(\Delta p\).

Ion-translocating adenosine triphosphatases (ATPases) are ubiquitous in nature. At least three different types have been shown to exist in a wide range of organisms. The \(Na^+/K^+\)-ATPase, found in many eukaryotic membranes, pumps \(Na^+\) out of the cell and \(K^+\) inwards, utilizing directly the energy of adenosine 5'-triphosphate (ATP) (25). The \(Ca^{2+}\)-ATPase of sarcoplasmic reticulum catalyzes the movement of \(Ca^{2+}\) across the membrane with energy derived from ATP hydrolysis (3). In mitochondria and bacteria, the \(Mg^{2+}\)-ATPase complex \((F_0F_1\) in the case of the mitochondrial complex; \(BF_0F_1\) for the bacterial) acts as a hydrogen ion translocating system (16). Each of these three ATPases has been shown to act reversibly; that is, they establish ion gradients in one direction with concomitant ATP hydrolysis, and they form ATP when the electrochemical ion gradient is of sufficient magnitude to allow for the formation of a high-energy phosphate bond. In erythrocytes, high external \(Na^+\) and high internal \(K^+\) induced the synthesis of ATP from adenosine 5'-diphosphate (ADP) and \(P_i\) (4). The reversal of the sarcoplasmic reticular \(Ca^{2+}\) pump likewise resulted in ATP synthesis (13). In mitochondria (20), chloroplasts (9), and bacteria (5, 15, 35), a chemical gradient of proton, acid outside, has been shown to induce synthesis of ATP. Likewise, a membrane potential, which is capable of driving protons electrogenically through the \(F_0F_1\), has been shown to elicit ATP formation (2, 14, 24). The demonstration of proton-coupled ATP synthesis lends strong support to Mitchell's proposed chemiosmotic mechanism of energy coupling (16).

We have shown previously that ATP synthesis from ADP and \(P_i\) can be energized by an artificially imposed pH gradient (33) or membrane potential (32) in ADP-loaded membrane vesicles of *Escherichia coli*, prepared by the method of Kaback (10). Oxidative phosphorylation in those vesicles could be driven by the oxidation of substrates such as \(\alpha\)-lactate, reduced phenazine methosulfate, or succinate (31). This communication reports further characterization of the coupling of the \(BF_0F_1\) to an artificially imposed protonmotive force. The protonmotive force, \(\Delta p\), has been defined by Mitchell as the electrochemical proton gradient, composed of an electrical component, the membrane potential, and a chemical component, \(\Delta pH\) (16). The relationship between these is expressed as \(\Delta p = \Delta \psi - 59\Delta pH\). Thus, the protonmotive force can be composed solely of a membrane potential or solely of a pH gradient,
depending on the circumstances. In this paper, the \(\Delta p \) has been formed by application of a \(\Delta pH \) alone or by the sum of \(\Delta pH \) and \(\Delta \psi \).

MATERIALS AND METHODS

Growth of cells. *E. coli* K-12 strain 7 (6) and its derivative, strain NR70, which lacks the BF, were grown aerobically in a basal salts medium (28), with 68 mM glycerol as a carbon source. Strains AN180 (wild type) and AN120 (uncA) and AN382 (uncB) (1), derivatives of K-12, were obtained from F. Gibson and were grown as described above with a supplement of 0.2 mM L-arginine. All experiments were done with cells in the exponential phase of growth.

Chemicals. ADP, ATP, firefly lantern extract (FLE-50), 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), valinomycin, and nigericin were purchased from Sigma Chemical Co. Carbonyl cyanide-3-chlorophenylhydrazone (FCCP) was the generous gift of P. G. Heytler of the E. I. DuPont de Nemours Co. N,N'-dicyclohexylcarbodiimide (DCCD) was obtained from Eastman Kodak Co. The other chemicals used in these studies were reagent grade and purchased from commercial sources.

Preparation of membrane vesicles. Membrane vesicles were prepared as described previously (31). Vesicles used for the experiments described in Fig. 2B and 5 were prepared in sodium phosphate buffer, and vesicles used in other experiments were prepared in potassium phosphate buffer. The preparation is essentially that of Kaback (10), in which spherooplasts are prepared by treatment with lysozyme and ethylenediaminetetraacetic acid (EDTA), followed by osmotic lysis. The procedure is modified to allow preloading with ADP (31, 33) or K* (8, 32). When the vesicles were preloaded with both ADP and K*, ADP-loaded vesicles were incubated with 0.5 mM potassium phosphate buffer, pH 7.3, containing 5 mM ADP for 30 min at 40°C. The vesicles were then washed once with a buffer consisting of 10 mM sodium phosphate, pH 8.2, containing 0.28 M sucrose and 5 mM MgCl2.

In the past these vesicles have been termed "right-side-out" (31, 33). However, the recent report of Adler and Rosen (L. W. Adler and B. P. Rosen, J. Bacteriol., submitted for publication) has shown that the vesicles are functionally mosaic. For that reason, the vesicles utilized in these experiments have been termed simply "EDTA-lysozyme vesicles."

Measurement of ATP synthesis. Oxidative phosphorylation was assayed with \(p \)-lactate (lithium salt) as described previously (31). Phosphorylation driven by artificially imposed pH gradients and membrane potentials were performed as described previously (32, 33). An alternate method of producing a pH jump was performed by preincubation of vesicles for 10 min at 23°C in a buffer consisting of 10 mM potassium phosphate, pH 8.2, containing 0.28 M sucrose and 5 mM MgCl2. The reaction was then initiated by the rapid addition of enough 1 N HCl to lower the external pH to 2.5. Nearly identical results were obtained using either method. It should be pointed out that a white aggregate formed in the vesicle suspension after about 15 s at pH 2.5. This presumably contains denatured vesicles.

As shown previously (32), membrane vesicles contain some ATP bound to the BF. Moreover, commercially obtained ADP contains trace amounts of ATP. These background amounts of ATP have been subtracted from the data, which are expressed as net ATP synthesis.

Other methods. Oxygen consumption was measured by a published method (22). ATP levels were determined as described previously (27, 31). Protein concentrations were determined by the method of Lowry et al. (12), using bovine serum albumin as a standard.

RESULTS

Effect of ionophores and permeant ions on \(\Delta pH \)-driven ATP synthesis. We have previously reported that a pH gradient artificially imposed across the membrane could drive ATP formation from ADP and P, (33). The electrogenic influx of protons would be expected to establish a membrane potential, interior positive, which could act as a back pressure for the further influx of protons. Thus, the formation of a reverse membrane potential may reduce the overall magnitude of the protonotive force driving ATP synthesis. Dissipation of this membrane potential should lead to higher levels of ATP synthesis. Addition of valinomycin, an ionophore for K* which mediates translocation of K* according to the Nerst expression, should reduce the membrane potential established by electrogenic proton influx. Valinomycin stimulated the ATP synthesis energized by a pH gradient about 60% (Fig. 1). On the other hand, nigericin, which mediates an electrically neutral exchange of H* for K* and dissipates proton gradients, inhibited proton-coupled synthesis in the presence of potassium (Fig. 1), with about 90% inhibition at 2 \(\mu \)g of nigericin per ml.

Previously, we reported the optimum pH for ATP synthesis energized by an artificial pH gradient as being about 2.5 in the absence of valinomycin (33). Similar results were obtained when valinomycin was used (data not shown). However, \(\Delta p \)-driven ATP synthesis in the presence of valinomycin and potassium has a broader pH range than in the absence of valinomycin. The significance of this observation is not known.

Figure 2 shows the synthesis of ATP driven by a \(\Delta pH \) in the presence or absence of valinomycin in vesicles prepared with or without K*. Valinomycin stimulated in K* vesicles (Fig. 2A) but not in Na* vesicles (Fig. 2B). Valinomycin partially inhibited oxidative phos-
agents such as SCN− and ClO4− at very high concentration caused an inhibition of lactose transport in EDTA-lysozyme vesicles. This inhibition would be, most likely, caused by the removal of BF2+. The treatment of EDTA-lysozyme vesicles with high concentration of chaotropic reagent makes vesicles more permeable to protons (17). Hasan and Rosen showed that rebinding of BF2+ to everted membrane vesicles treated with chaotropic reagent restores proton-coupled processes in such vesicles (S. M. Hasan and B. P. Rosen, submitted for publication). However, low concentration of such chaotropic reagents did not show the inhibition of active transport in membrane vesicles (17).

Phosphorylation in K+ vesicles (31), but it did not inhibit this process in Na+ vesicles (data not shown). Similarly, nigericin had no significant effect on either oxidative or ΔpH-driven phosphorylation in Na+ vesicles (data not shown).

It was of interest to test the effect of the other permeant ions on ΔpH-driven ATP synthesis. SCN− did not show any stimulatory effect at 5 to 20 mM; on the contrary, it strongly inhibited the reaction (Table 1). The use of HClO4 instead of HCl did not have a significant effect. Even in the presence of ClO4−, valinomycin plus K+ showed a stimulatory effect (data not shown). Perhaps ClO4− is not an effective permeant ion in E. coli membranes. The effect of SCN− on oxidative phosphorylation was also tested. SCN− partially inhibited respiratory-driven phosphorylation at 5 to 20 mM (Table 1). This partial inhibition may be caused by the dissipation of membrane potential, similar to the effect of valinomycin plus K+ on the oxidative phosphorylation (31). However, if that is the case, then the observed inhibition of ΔpH-driven ATP synthesis by SCN− cannot be explained, since dissipation of a Δψ would be expected to stimulate. Thus, the effects of SCN− and ClO4− require additional investigation.

Patel et al. (17) reported that chaotropic re-
Figure 3 shows the dependence of the extent of ATP synthesis on the magnitude of the ΔpH. The magnitude of the ΔpH was changed by changing the base stage pH from 5.0 to 8.7. Preparation of the vesicles in buffer of pH less than 5 caused denaturation, whereas use of buffers of pH 9 or above caused precipitation of a salt that was presumably a magnesium phosphate complex. The yield of ATP was roughly proportional to the size of the pH change (Fig. 3). Similar results were obtained with ΔpH-driven Ca²⁺ transport in everted membrane vesicles (34).

Effect of electron transport chain inhibitors. The effect of inhibitors of the electron transport chain on ATP synthesis driven by an artificial ΔpH is shown in Fig. 4. p-Chloromercuribenzoate, HOQNO, and NaCN all inhibited oxygen consumption and oxidative phosphorylation in membrane vesicles when d-lactate was utilized as an energy source. However, these compounds had no significant effect on ΔpH-driven phosphorylation. At higher concentrations, HOQNO caused some inhibition. High concentrations of HOQNO have been reported to inhibit ΔpH-driven proline transport in similar vesicles (8). Thus, HOQNO may have a secondary action on the membrane system in addition to its primary action on the quinone component of the electron transport chain. These effects of respiratory-chain inhibitors support the idea that the respiratory chain is not involved in the phosphorylation energized by an artificial proton flux. We cannot exclude

Figure 3. ATP synthesis as a function of the magnitude of ΔpH. ADP-loaded membrane vesicles were washed once with buffer consisting of 10 mM potassium phosphate containing 0.28 M sucrose, and 5 mM MgCl₂ at various pH values (pH 5.0, 6.0, 7.0, 8.0, or 8.7) and suspended in the same buffer. After preincubation at 23°C for 10 min, the vesicles were diluted 20-fold into buffer consisting of 10 mM potassium phosphate containing 0.28 M sucrose, 5 mM MgCl₂, and 2 μg of valinomycin per ml (pH 2.5). After 5 s, samples were withdrawn and ATP content was measured.

Figure 4. Effect of inhibitors of the respiratory chain on oxidation, oxidative phosphorylation, and ΔpH-induced phosphorylation. Oxygen consumption (■) and oxidative phosphorylation (▲) were measured as described in the text, with 20 mM d-lactate as an oxidizable substrate. ΔpH-induced phosphorylation (●) was measured as described in the legend to Fig. 1, with 2 μg of valinomycin per ml. p-Chloromercuribenzoate (A), HOQNO (B), or NaCN (C) was added to the assay mixture at the indicated concentration and was preincubated with vesicles for 10 min. The values for the controls were: 82-ng atoms of O/min per mg of protein for oxygen consumption, 1.42 nmol of ATP/min per mg of protein for oxidative phosphorylation, and 0.52 nmol of ATP/8 s per mg of protein for ΔpH-induced phosphorylation.
the possibility that cyanide may not work at very low pH because of the formation and volatility of HCN.

Δp-Driven phosphorylation in BF₀F₁ mutants. Previously, we reported (31-33) that membrane vesicles from a BF₁ mutant, NR70, are incapable of ATP synthesis when energy is supplied by respiration, a ΔpH, or a Δψ. This strain lacks the BF₁, and its membrane is very permeable to proton (21). Strain AN120 is also a BF₁ mutant lacking uncB, and hence fails to maintain normal proton permeability. UncB mutants, however, this strain is believed to have an inactive BF₁, so that the membrane is able to maintain normal proton impermeability.

Butlin et al. (1) reported the isolation of an uncB mutant, which lacks ATP-linked membrane processes although it has normal ATP hydrolyzing activity. Other mutant strains that have characteristics similar to those of uncB mutants have been isolated (11, 25). Mutants of the uncB type are most likely defective in the BF₀ or intrinsic membrane protein portion of the ATP synthetase complex.

Membrane vesicles from either AN120 or AN382 failed to synthesize ATP coupled to either respiration or an artificially imposed ΔpH (Table 2). Wilson et al. (35) reported similar results using whole cells of AN120. It is very likely that the BF₀F₁ of AN382 cannot mediate proton movement, so that an electrochemical proton gradient cannot couple to ATP synthesis, nor can hydrolysis of ATP generate a protonmotive force.

Simultaneous imposition of ΔpH and Δψ. Simultaneous imposition of both a ΔpH and a Δψ has been reported to elicit greater ATP synthesis than either alone in mitochondria (29) and chloroplasts (24). Figure 5 shows ATP synthesis by both a ΔpH and a Δψ, imposed simultaneously, with a maximal level of 0.8 to 0.9 nmol of ATP per mg of membrane protein synthesized. In the absence of a K+ gradient across the membrane, valinomycin stimulated the phosphorylation by ΔpH about 60% (Fig. 1 and 2). In K⁺-loaded vesicles, the stimulation by valinomycin was more than 100% at the maximum level (Fig. 5). Although externally added KCl does not significantly inhibit ATP synthesis energized by a ΔpH, 20 mM KCl inhibited ATP synthesis energized by the combination of a ΔpH and Δψ about 30% (data not shown). As reported previously (32), this concentration of external KCl inhibits Δψ-driven ATP synthesis almost completely. On the other hand, nigericin markedly inhibited phosphorylation. Thus, under the conditions described in this paper, a ΔpH is more effective than a Δψ in energizing phosphorylation.

FCCP, a proton conductor, DCCD, an inhibitor of the BF₀, or NaN₃, an inhibitor of the BF₁, all inhibited phosphorylation under the imposition of both a ΔpH and Δψ (Table 3).

DISCUSSION

According to Mitchell's chemiosmotic postulate of oxidative and photosynthetic phosphorylation, the membrane-bound F₀F₁ complex is a reversible electrogenic proton pump. Likewise, respiratory and photoredox chains act as primary proton pumps (16). Most of the experimental evidence supporting the chemiosmotic coupling mechanism have derived from the mitochondrial and chloroplast literature. Some of the more recent data, however, have been ob-

Table 2. Absence of ATP synthesis in membrane vesicles prepared from uncA and uncB mutants

<table>
<thead>
<tr>
<th>Strain</th>
<th>ΔpH driven</th>
<th>Δ-Lactate driven</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nmol/5 s/mg</td>
<td>%</td>
</tr>
<tr>
<td>AN180</td>
<td>0.30</td>
<td>100</td>
</tr>
<tr>
<td>(uncA<sup>-</sup>)</td>
<td><0.01</td>
<td><3</td>
</tr>
<tr>
<td>AN120 (uncA<sup>-</sup>)</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>AN382 (uncB<sup>-</sup>)</td>
<td>0.03</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>nmol/min/mg</td>
<td>%</td>
</tr>
<tr>
<td>AN180</td>
<td>0.90</td>
<td>100</td>
</tr>
<tr>
<td>(uncA<sup>-</sup>)</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>AN120 (uncA<sup>-</sup>)</td>
<td><0.01</td>
<td><1</td>
</tr>
<tr>
<td>AN382 (uncB<sup>-</sup>)</td>
<td><0.01</td>
<td><1</td>
</tr>
</tbody>
</table>

* Reaction was initiated by diluting vesicles into the buffer containing 2 μg of valinomycin per ml at pH 2.5.
tained using bacteria. Scholes et al. (23) reported that proton translocation occurs under the illumination of light or during respiration in both whole cells and membrane vesicles of several species of photosynthetic bacteria. Reeves (19) showed oxidation-driven proton efflux from EDTA-lysosome membrane vesicles of E. coli. Hertzberg and Hinkle (7) showed respiration- and ATP-driven proton uptake in inverted membrane vesicles. Maloney et al. (14, 15) recently reported ATP synthesis energized by an artifically imposed membrane potential or proton gradient in whole cells of Streptococcus lactis. Similar results have been obtained using E. coli cells (5, 35). Recently, an artificially imposed membrane potential (32) or proton gradient (33), in addition to oxidation, was shown to drive the synthesis of ATP in isolated membrane vesicles of E. coli. These results all demonstrate the utility of bacterial systems in the study of bioenergetics. In the system of ATP synthesis driven by an artificial protonmotive force, net synthesis of ATP is a transient one. This is reasonable since the protonmotive force was a transient one. The artificially imposed proton gradient and potassium gradient dissipate after a short time. If the protonmotive force becomes lower than the threshold level, supposedly about 200 mV (15, 35), there would be no further detectable synthesis of ATP. Under the conditions described in this paper, acid hydrolysis of ATP might take place, since the pH of assay mixture is very low. Actually, the decrease of ATP level was observed 20 to 30 s after the pH transition.

The pH optimum for the phosphorylation driven by $\Delta \psi$ in E. coli cells (14) and E. coli vesicles (32) seems to be around 5. The pH transition from 8.2 to 5.0 produced a small amount of ATP (33). The reason for this low level of ATP formation would be that the initial protonmotive force, approximately 190 mV, is too small. According to thermodynamic calculations, a force of 210 mV is necessary to obtain an ATP/ADP ratio of 1 with 10 mM phosphate (16). To establish ΔpH of sufficient magnitude we must lower the outer pH, since it is technically very difficult to raise the inner pH.

By lowering the pH of the reaction mixture, we can obtain a larger ΔpH, but the BF$_3$ complex is relatively unstable at very low pH. Thus, it is very difficult to observe the theoretical ATP/ADP ratio under the conditions used in this study. Thayer and Hinkle studied the kinetics of the artificially driven ATP synthesis by submitochondrial particles and observed a rate of ATP synthesis of 4 to 5 nmol/s per mg of protein (29, 30). For this measurement they used a continuous-flow mixing technique, measuring the initial 100 ms. In the experiments described in this report, the earliest time point taken is 5 s, so that true initial rates cannot be calculated. Still, a comparison of their values with ours suggests that the levels of ATP synthesis we observe are of the same order of magnitude. The effect of respiratory-chain inhibitors on ΔpH-driven phosphorylation demonstrates that there is no direct coupling between the respiratory chain and ATP synthesis. Likewise, Wilson et al. (35) showed ATP synthesis energized by an artificial protonmotive force in intact cells of a mutant that lacks functional cytochromes. Such findings eliminate the possibility of the involvement of cytochromes in ATP synthesis. Reconstitution experiments reported by Racker and Stoekenius (18) and by Yoshida et al. (36), using mitochondrial oligomycin-sensitive ATPase or bacterial DCCD-sensitive ATPase, completely eliminated the possibility of the primary interaction of respiratory components and ATPase in ATP formation.

ACKNOWLEDGMENTS

I am most grateful to B. P. Rosen, in whose laboratory this work was performed, for valuable discussions and for his help in the preparation of this manuscript. Thanks are also due to T. H. Wilson of Harvard Medical School and S. M. Hasan and L. W. Adler for this department for their valuable discussions.

This work was supported by Public Health Service grant GM-21848 from the National Institute of General Medical Sciences, grant BMS 75-15986 from the National Science Foundation, and by a Basil O'Connor Starter Award from the National Foundation March of Dimes.

LITERATURE CITED

ATP SYNTHESIS IN E. COLI VESICLES 769