Thiolation and 2-Methylthio- Modification of Bacillus subtilis Transfer Ribonucleic Acids

Barbara S. Vold,* Maria E. Longmire,† and Duane E. Keith, Jr.

Biomedical Research Laboratory, SRI International, Menlo Park, California 94025

Received 29 January 1981/Accepted 6 August 1981

Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(Δ2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[9-β-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[9-β-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-β-D-ribofuranosyl]purin-6-ylcarbamoyl-L-threonine. The existence of N-[9-β-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides—N6-(Δ2-isopentenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1—occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.

The modified nucleosides of Bacillus subtilis tRNA's show some differences from those of Escherichia coli, mainly in the types and amounts of modifications involving thiolation. Previous work by Goehler and Doi (11) had shown that B. subtilis tRNA's had at least three thionucleotides, one of which was sU; the others were not identified. Cerutti et al. (8) reported a content for sU in B. subtilis tRNA's which was much lower than that in E. coli tRNA's. The presence of other thionucleosides has been noted in certain tRNA's that have been sequenced. Yamada et al. (30) found cmm's sU in B. subtilis tRNA169; ms2A has been found in tRNA Try (15, 19); ms2A and sU have been found in tRNA2; Try (15, 19); and ms2A has been found in tRNA169 (29). We have previously reported the presence of sU and two other thionucleosides in tRNA's from B. subtilis (24) and estimated the overall level of thiolation to be between 0.36 and 0.44 mol of total thionucleoside per mol of tRNA. The content of thionucleosides is 3 to 4 times greater in E. coli tRNA's than in B. subtilis tRNA's. Nevertheless, there are at least five thiolated nucleosides in B. subtilis, as described in this paper. Thus, the lower degree of thiolation is not reflected by fewer thiolated nucleosides, but rather by what seems to be a more complex pattern of thiolation, with about one-third of the sulfur groups being present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue.

Materials and Methods

Abbreviations. Nucleoside abbreviations used are: sU, 4-thiouridine; ms2A, N6-(Δ2-isopentenyl)-2-methylthioadenosine; ms2A, 2-methylthioadenosine; ms2A, N6-(Δ2-isopentenyl)adenosine; sC, 2-thiocytidine; mam'sU, 2-thio-5-(N-methylaminomethyl)uridine; cmnm'sU, 5-carboxymethylaminomethyl-2-thiouridine; ms2A, N-[9-β-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine; and tA, N-[9-β-D-ribofuranosyl]purin-6-ylcarbamoyl-L-threonine.

Labeling of tRNA's with 35S. Cells of B. subtilis 168 trpC2 were labeled with 35S in vivo by adding 0.5 mCi of L-35S-cysteine (Amersham Corp.; 48 mCi/mmol) to 20 ml of medium consisting of 10 g of tryptone (Difco Laboratories), 5 g of yeast extract (Difco), 5 g of NaCl, 10-3 mol of CaCl2, 10-4 mol of MnCl2, 10-5 mol of FeCl3, and 40 mg of L-tryptophan per liter. The use of L-[35S]-cysteine enabled the labeling of tRNA's with sulfur in a rich medium that would support sporulation, although L-cysteine may not be required.
the ultimate sulfur donor for *B. subtilis* (28). Specific activities of 4 × 10^4 to 6 × 10^4 cpm per unit of absorbancy at 260 nm of tRNA were obtained. The use of sodium [35S]sulfate did not result in any detectable incorporation under the same conditions. Since the alteration in chromatographic elution properties of the tyrosine tRNA isoacceptors has been shown to be due to a change in the thymemethylation of t^A during development (15), it seemed desirable to do the labeling under conditions in which sporulation and normal development were possible. The tRNA's were extracted with phenol after the cells were broken with lysozyme, and the tRNA fraction was isolated after chromatography of the extract on a column of Sephadex G-100 (24).

Cells of *E. coli* K-12, strain W3110 (*lacZ, U118 trpR Azi'Val'), were labeled with 0.5 mcCi of L-[^35S]cysteine in 50 ml of medium containing 10 g of tryptone, 5 g of yeast extract, and 10 g of NaCl per liter. The tRNA was extracted as previously described (27).

Digestion of tRNA to nucleosides and analysis by two-dimensional TLC. tRNA's were digested to nucleosides by incubating approximately 1 unit of absorbancy at 260 nm of tRNA in 20 ml of 0.06 M ammonium acetate (pH 4.5), plus 1 mM EDTA, 4 U of RNase T, 20 U of RNase T, and 0.06 mg of pancreatic RNase, 37°C, 6 h. Nucleosides were obtained by further digestion after adding Tris to 5 mM, adjusting the pH to 7.5, adding 1 U of alkaline phosphatase, and continuing the incubation at 37°C for 6 h. Two-dimensional thin-layer chromatography (TLC) analyses were performed on cellulose-coated, 20- by 20-cm TLC plates backed with aluminum by using 1-butanol-isobutyric acid–concentrated ammonium hydroxide–water (75:37.5:2.5:25:25, vol/vol/vol/vol) in the first dimension and saturated ammonium sulfate–0.1 N sodium acetate (pH 6.0)–isopropanol (79:19.2: vol/vol/vol) in the second dimension (21).

RPC-5 column chromatography. tRNA's were fractionated on an RPC-5 column (0.6 by 19 cm) at 25°C with a gradient of 0.3 to 1.2 M NaCl in 10 mM sodium acetate (pH 4.5), 10 mM MgCl₂, 10 mM EDTA, and 20 mM 2-mercaptoethanol. Fractions of 2 ml were collected at a flow rate of 0.5 ml/min.

Preparation of antibody and immunoadsorbent gel. Antibodies to t^A were elicited in rabbits by using a bovine serum albumin-nucleoside conjugate. The preparation and specificity of the antibodies have been described previously (26). The immunoadsorbent was made by coupling partially purified immunoglobulin fraction to CNBr-activated Sepharose 4B as described previously (27).

RESULTS

Fractionation of ^35S-labeled tRNA's on RPC-5 and TLC analyses of thionucleosides. In *E. coli* tRNA's, four nucleosides have been identified—s^C, s^U, ms^3A, and mam^s^U, the most commonly occurring thionucleoside being s^U (7, 16, 23). Similar to *E. coli*, *Pseudomonas aeruginosa* tRNA's contain s^U, s^C, mam^s^U, and one unidentified thionucleoside, with 65% of the thionucleoside being present as s^U (23). When we compared the thionucleosides isolated from *B. subtilis* or *E. coli* labeled in vivo with [35S] in very similar medium, chosen for *B. subtilis* because it supports normal sporulation, we found s^C, s^U, ms^3A, and mam^s^U in *E. coli* tRNA's, with s^U being predominant, as would be expected. *B. subtilis* tRNA's also contained s^U and ms^3A; however, s^U was not the predominant nucleoside, and there was no evidence for s^C or mam^s^U. One nucleoside (designated X₁ in Fig. 2) chromatographed near the position of mam^s^U as a nucleoside; however, a comparison of nucleotide patterns showed no radioactivity in the area characteristic of mam^s^U. We have no suggestion as to the identity of this nucleoside at present.

Instead of using total [35S]tRNA's, we attempted to achieve some purification by chromatographing the [35S]tRNA's on a column of RPC-5 (Fig. 1). The majority of the radioactivity chromatographed in five areas, the fractions from which were pooled, and the recovered tRNA's were digested to nucleosides and analyzed by two-dimensional TLC. Since the major areas absorbing in the UV had little or no radioactivity from [35S], it is possible that several *B. subtilis* tRNA's contain no thionucleosides at all. This is compatible with the previously determined value of 0.36 to 0.44 mol of thionucleoside per mol of *B. subtilis* tRNA (24).

The TLC analyses of the thionucleosides from each of the RPC-5 fractions are presented in Fig. 2. The identity of s^U, ms^3A, and mam^s^A was confirmed by co-chromatography with known standards. As mentioned above, we do not know the identity of the nucleoside designated X₁; however, it does not seem to be mam^s^U. X₂ is probably cmm^s^U based on its chromatographic behavior in this particular solvent system (30) and its known occurrence in *B. subtilis* tRNA. We think the area labeled A₁ is an artifact because its presence is highly variable from preparation to preparation. Since it occurs in the same RPC-5 fractions as X₂ (cmm^s^U), it may be a degradation product of X₂. Also the areas near the origin, O₁-s, are not always reproducible, although one of them is a real nucleoside which we have subsequently identified as ms^3A.

The occurrence of ms^A in the nucleoside digest is worth noting. The presence of the nucleoside ms^A was confirmed by co-chromatography of the labeled nucleoside with an internal standard kindly provided by Nelson Leonard. The nucleotide ms^A has been reported to occur in the tRNA's of *Bacillus stearothermophilus* (2). However, the biosynthesis of the 2-methylthio derivative of t^A in *E. coli* is thought to occur in a sequential manner by which the t^A
THIOLATED NUCLEOSIDES OF B. SUBTILIS tRNA's

Fig. 1. Chromatography of tRNA's labeled in vivo with 35S and fractionated on a column of RPC-5. Absorbance at 254 nm was monitored by a UV detector with an analytical flow cell and is represented by a solid line. Fractions containing 35S were located by liquid scintillation spectroscopy of samples. Radioactivity is indicated by a dashed line. Fractions marked by numbered bars were collected and further analyzed as shown in Fig. 2.

Fig. 2. TLC analyses of the thionucleosides present in the various tRNA fractions eluted from RPC-5. Fractions designated by numbered bars in Fig. 1 were collected, digested to nucleosides, and analysed by TLC as described in the text. Positions for the major nucleosides were located by UV and shown in the figure as circled areas. Areas containing radioactivity were located by fluorography. The figure is a composite of fluorograms of TLC analyses of fractions 1 through 5 (Fig. 1) plus a schematic diagram summarizing all areas.
must be formed before the thiomethyl group is added (1). Therefore, ms2A would not be expected to be a normal biosynthetic precursor. Whether ms2A arose by degradation of ms2t6A, however, is open to question. Although ms2A is susceptible to decomposition, the complete removal of the isopentenyl side chain requires rather drastic chemical treatment (12). Nevertheless, an enzyme activity has been detected in \textit{Lactobacillus acidophilus} that can remove the isopentenyl group at the macromolecular level (17), and it is possible that such an enzyme activity exists in \textit{B. subtilis}. The ms2A group could also arise from degradation from ms2t6A; however, there is so little ms2t6A present that it seems very unlikely.

The TLC analyses from RPC-5 fractions were helpful in characterizing the types of thionucleosides present in \textit{B. subtilis} tRNA's; however, they also showed that the presence of four of the thionucleosides in tRNA's could be correlated with the elution position of the tRNA from the RPC-5 column. The amounts of radioactivity from the TLC plates represented in Fig. 2 were evaluated by cutting out the appropriate areas and measuring the radioactivity in a liquid scintillation spectrophotometer (Table 1). The nucleoside X\textsubscript{1}, predominated in early-eluting species; X\textsubscript{2} predominated in mid-eluting species; and ms2A and ms2t6A predominated in late-eluting species. Interestingly, the presence of s4U did not show a correlation with elution position, and it was found in at least three of the fractions. Like ms2t6A, therefore, X\textsubscript{1} and X\textsubscript{2} may have an effect on the physical properties of the tRNA's containing them and affect their elution position. The content of s4U does not have such an effect.

Similar conclusions about thionucleosides affecting the chromatographic elution properties of \textit{B. subtilis} tRNA's have come from studies in which the chromatography of tRNA species was observed before and after oxidation with iodine (11) or periodate (23). In the former study, the tRNA's for serine, tyrosine, lysine, and glutamic acid were affected. In the latter study, changes in tRNA's for lysine, tyrosine, and tryptophan were noted. Chuang and Doi (9) have used the differences in chromatographic properties of reduced and oxidized lysine tRNA's to purify a lysine tRNA species from \textit{B. subtilis}.

The occurrence of ms2t6A. Using total nucleoside digests, even from RPC-5 fractions, it was difficult to establish the presence of ms2t6A, although Yamada and Ishikura (29) have reported the presence of that nucleoside in a purified species of \textit{B. subtilis} tRNA. Since we had made an antibody to t6A, we decided to employ that antibody to try to enrich for ms2t6A. Thus, an experiment was designed to label cells with

<table>
<thead>
<tr>
<th>Radioactive area</th>
<th>RPC-5 fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>X\textsubscript{1}</td>
<td>96 43 1 2 2</td>
</tr>
<tr>
<td>X\textsubscript{2} (cmnm2s4U)</td>
<td>1 10 28 2 1</td>
</tr>
<tr>
<td>ms2t6A</td>
<td>0 1 1 22 9</td>
</tr>
<tr>
<td>ms2A</td>
<td>0 0 2 54 23</td>
</tr>
<tr>
<td>s4U</td>
<td>3 38 25 12 61</td>
</tr>
</tbody>
</table>

* The amount of each thionucleoside is expressed as the percentage of radioactivity in each radioactive area compared with the total for that particular TLC plate.

35S, extract the tRNA, expose the tRNA to an anti-t6A immunoadsorbent, recover the bound tRNA's, separate the species on an RPC-5 column, and analyze the nucleosides of any sulfur-containing tRNA's. For interaction with the anti-t6A Sepharose, a batchwise technique was used. About 9 units of absorbancy at 260 nm of 35S\textit{t}RNA was incubated with 0.5 ml of anti-t6A immunoadsorbent in a total volume of 2 ml of 150 mM NaCl, 10 mM sodium phosphate (pH 7.4), and 20 mM MgCl\textsubscript{2} (buffer A) at 19\textdegree C for 30 min. The immunoadsorbent was then transferred to a fritted disk funnel and washed successively three times with 2 ml of buffer A. The bound fraction was obtained by incubation for 10 min at room temperature with 3 ml of 10% pyridine in buffer A. The filtrate from the immunoadsorbent gel was then dialyzed against the starting buffer for the RPC-5 column and loaded onto an RPC-5 column. The majority of the radioactivity eluted in one area. The appropriate fractions were pooled, precipitated with ethanol, collected on a membrane filter, eluted into an appropriate buffer for digestion to nucleosides by a gentle enzymatic procedure, and fractionated in two dimensions by TLC. The fluorogram of the TLC analysis is shown in Fig. 3. Two areas containing 35S were located; they are circled by dotted lines. The location of the internal standard s4U is indicated by a solid line. The identification of ms2t6A was based on the co-chromatography of a standard obtained from \textit{B. subtilis} tRNA1-29 provided by Y. Yamada and H. Ishikura. The TLC plate also seemed to contain a small amount of X\textsubscript{2}, but it is essentially invisible in Fig. 3. It is important to consider that \textit{B. subtilis} also contains a species, threonine
tRNA, which has the t\(^6\)A modification without the thiomethyl modification (13). So apparently the thiomethylating enzyme discriminates between t\(^6\)A in lysine tRNA and t\(^6\)A in threonine tRNA.

Identification of ms\(^2\)t\(^6\)A in \textit{B. subtilis} lysine tRNA's by analysis by mass spectrometry. Yamada and Ishikura reported the presence of ms\(^2\)t\(^6\)A in lysine tRNA\(_1\) from \textit{B. subtilis} based on its ultraviolet absorption spectra and co-chromatography with ms\(^2\)t\(^6\)A obtained from rabbit liver tRNA\(_{\text{Lys}}\) (29). We wished to confirm the presence of this nucleoside by mass spectrometry and also see whether its presence could be detected in the other of the two major lysine isoacceptors, tRNA\(_{\text{Lys}}\). Purified species of tRNA\(_{\text{Lys}}\) and tRNA\(_{\text{Lys}}\) made in our laboratory were analyzed by H. Pang and J. A. McCloskey (unpublished results). The two tRNA samples were hydrolyzed and trimethylsilylated, and their high-resolution mass spectra were photographically recorded (H. Pang and J. A. McCloskey, 28th Annual Conference on Mass Spectrometry, and Allied Topics, New York, N.Y., 1980, p. 384–385, abstr. WAMOB1). A compound was identified on both tRNA samples having the same properties as the ms\(^2\)t\(^6\)A previously isolated from rabbit liver tRNA and characterized by high-resolution mass spectrometry (31).

Levels of thionucleosides in total tRNA's isolated from cells in different stages of growth. Sequence studies on the two tyrosine isoacceptors from \textit{B. subtilis} showed that they had the same primary sequence but differed in that the species which was prominent in exponentially growing cells contained t\(^6\)A in the anticodon loop, whereas the isoacceptor prominent in the stationary phase contained ms\(^2\)t\(^6\)A (18). Studies on isolated nucleosides from mixed tRNA's indicated that 29\% of the t\(^6\)A population was thiomethylated at midexponential growth and 67\% was thiomethylated at the stationary phase (25). This change in degree of thiomethylation causes a chromatographic alteration in the tyrosine isoacceptors and has been suggested to be associated with the initiation of sporulation.
(6). An increase in the thiomethylation of i^3A may also be responsible for chromatographic alterations observed in other tRNA's which contain the i^3A moiety, such as tryptophan tRNA and some species of leucine and serine tRNA's.

To see whether there were any major changes in the levels of other thionucleosides, we labeled cells with ^{35}S under different growth conditions, extracted the tRNA's, digested them to nucleosides, separated the nucleosides by two-dimensional TLC, made an autoradiogram of the TLC plate, cut out areas containing radioactivity, and counted them in a scintillation counter. Table 2 presents a comparison of the percentage which each thionucleoside represented of the total for $[^{35}S]tRNA's extracted from B. subtilis cells in exponential growth or stationary phase. Exponential cells were harvested at 1 unit of absorbancy at 660 nm per ml, and the radioactive label was present throughout growth. Stationary-1 cells were harvested 2 h after the end of exponential growth, and the label was present throughout growth. Stationary-2 cells were also harvested 2 h after the end of exponential growth, but the radioactive label was added only after the culture had reached 1 unit of absorbancy at 660 nm per ml. Stationary-2 cultures plus glucose cells were treated the same as stationary-2 cultures, except that 1% glucose was added to the culture 15 min before the addition of the label. The addition of 1% glucose in mid-exponential growth suppressed the efficiency of sporulation after 10 h of growth from 80 to 0.003%. The culture with glucose was added to the protocol in the hope of amplifying any difference between sporulating and nonsporulating cells. The standard deviations were calculated from six independent experiments starting with different exponential cultures, so the variability reflects what one might expect repeating the entire process on a different day with a different culture. As mentioned before, the areas near the origin and the area designated a; on Fig. 2 were quite variable. This is probably due to the instability of some thionucleosides and the generation of degradation products during the isolation and analysis procedures. Therefore, it is probably unwise to evaluate differences of less than about 50% by such a technique. Nevertheless, it is evident that there were no dramatic changes in thionucleosides during growth, such as the lack of a particular type of thionucleoside at a given growth stage, which could be detected by looking at mixed tRNA populations. Therefore, differences in the thionucleoside content between isoaccepting tRNA species that occur during growth in B. subtilis are not the result of loss of enzyme activity or substrate limitation due to shifts in the nutritional environment or biosynthetic pathways, but are selective changes that must be regulated with more specific mechanisms. With the use of mixed tRNA's, thionucleosides that are present in only one or a few tRNA species, such as m^2t^6A, might be overlooked. Therefore, it is desirable to look at purified tRNA species in addition to getting a general picture from mixed tRNA's.

In addition, the data in Table 2 demonstrate which thionucleosides are most common in occurrence. Assuming that there is 0.44 mol of total thionucleoside per mol of tRNA from B. subtilis and that there are 42 different species of tRNA in B. subtilis, then one would find the most frequent thionucleoside in about five different tRNA species and the least frequent in about one. Of course, the various tRNA species are present in different amounts. Henner and Steinberg (14) have reported the relative abundance of 32 tRNA species from B. subtilis to range from 0.9 to 17% of the total. They also detected five to six species which were not quantitated due to their low abundance. None the less, it is true that thiolated nucleosides are not very common modifications in B. subtilis tRNA's, and each type probably occurs in a small subset of tRNA species.

DISCUSSION

The features—determined by ourselves and others—in which the thiolated nucleosides in B. subtilis tRNA's differ from the typical prokaryotic picture (which is primarily the result of studies with E. coli) are the following: (i) s^*U is

Table 2. Levels of thionucleosides under different growth conditions

<table>
<thead>
<tr>
<th>Thionucleoside</th>
<th>Growth stage</th>
<th>Stationary-1</th>
<th>Stationary-2</th>
<th>Stationary-2 plus glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exponential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m^2t^6A</td>
<td>21 (±9)</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>m^3A</td>
<td>9 (±5)</td>
<td>14</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>s^*U</td>
<td>11 (±7)</td>
<td>12</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>X_1</td>
<td>24 (±9)</td>
<td>22</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>X_2 (cmm$^5s^*U$)</td>
<td>21 (±4)</td>
<td>14</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Areas near origin (partly m^2t^6A)</td>
<td>7 (±6)</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

* Values are expressed as the percentage which each radioactive area represents of the total for a TLC analysis. Standard deviations are given in the first column. Each number represents the mean for six independent experiments.

* Areas containing radioactivity are as designated in Fig. 2 for B. subtilis.

* Growth conditions are explained in the text.
not the major thionucleoside (8, 24, 28); (ii) the overall degree of thiolation is three to four times lower than that of E. coli (28); (iii) six thionucleosides have been found in B. subtilis tRNA's (ms2tA, ms2A, ms2A, cmms2sU, s3U, and one unknown), whereas four thionucleosides have been reported for E. coli tRNA's (16, 20), only two of which are also found in B. subtilis—s3U and ms2tA; (iv) in E. coli tRNA's 90 to 93% of the i6A moieties were thiomethylated at whatever growth stage was examined (4), whereas in B. subtilis the degree of thiomethylation of i6A changes during development (15, 25); and (v) ms2tA is present in B. subtilis tRNA's (29). The ms2tA modification reported in B. subtilis lysine tRNA by Yamada and Ishikura (29) has been found so far in only one other tRNA, the lysine tRNA from rabbit liver (31). It has not been found in any of the tRNA's of E. coli or any other procaryote.

It is possible that some of the thionucleosides, in particular ms2tA, ms2A, cmms2sU, and X, exert an influence on the chromatographic properties of the tRNA's containing them since they occur only in specific areas of the elution profile of an RPC-5 column. Although changes in the degree of thiomethylation have been reported in purified tRNA's for tyrosine (15, 18), one cannot detect major changes in the amounts of thiolated nucleosides in general by examining unfractionated tRNA's labeled in vivo with 35S, digested to nucleosides, and chromatographed on two-dimensional TLC. It would seem, therefore, that the changes that are detected are regulated by specific mechanisms and not by a lack of substrate resulting in hypomodified tRNA at a particular growth stage, which has been reported to be the cause of the appearance of hypomodified tRNA's in another system (22).

Evidence for the functional importance of thiolated nucleosides, and particularly thiomethylated nucleosides, has been reported. The increase in the amount of thiomethylation of i6A in the tyrosine isoacceptors described by Buu et al. (6) may be related to the sporulation process. In E. coli, Buck and Griffiths have found that certain tRNA's lacking the ms2tA modification can function as positive regulatory elements of the aromatic acid transport system (5), and the loss of the ms2 group on i6A decreases the ability of the tRNA to bind to ribosomes in E. coli (10) as well as in B. subtilis (18). Since E. coli tRNA's seem to have only t6A and 90% of the i6A moieties as ms2tA, it is very interesting that in B. subtilis there are tRNA's which contain ms2s6A or t6A and ms2tA or i6A.

ACKNOWLEDGMENTS

We thank H. Ishikura and S. Nishimura for sharing information with us concerning the modifications in B. subtilis tRNA's before publication. We are indebted to H. Ishikura and Y. Yamada for sending us a sample of ms2tA. The invaluable assistance of Henriana Pang and James A. McCloskey is also acknowledged for the high resolution mass spectrometric analysis of modified nucleosides from lysine tRNA's.

This work was supported by Public Health Service research grant GM 27732-01 from the National Institutes of Health.

LITERATURE CITED

- N is (1-isopentenyl)adenosine. Nucleic Acids Res. 9: 401–414.
7. Carbon, J., H. David, and M. H. Studier. 1969. Thio-

8. Cerutti, P., J. W. Holt, and N. Miller. 1968. Detection and determination of 5,6-dihydrouridine and 4-thiour-

- dine in transfer ribonucleic acid from different sources. J. Mol. Biol. 34:505–518.

11. Goehler, B., and R. H. Doi. 1968. Presence and function of sulfur containing transfer ribonucelic acid for Bacil-

14. Henner, D. J., and W. Steinberg. 1979. Transfer ribonucelic acid synthesis during sporulation and spore growth in Bacillus subtilis studied by two-dimen-

16. Lipsett, M. N. 1970. Enzymes producing 4-thiouridine in Escherichia coli tRNA: approximate chromosomal loca-

17. McLennan, B. D. 1975. Enzymatic demodification of

26. Vold, B. S. 1979. Radioimmunoassays for the modified nucleosides N\(\left\{9-\left(\beta\text{-D-ribofuranosyl}\right)\text{purin-6-ylcarboxamoyl}\right\}\text{-L-threonine and 2-methylthioadenosine. Nucleic Acids Res. 7:193-204.\)

29. Yamada, Y., and H. Ishikura. 1981. The presence of N\(\left\{9-\left(\beta\text{-D-ribofuranosyl}\right)\text{2-methylthiopurin-6-ylcarboxamoyl}\right\}\text{-L-threonine in lysine tRNA, from Bacillus subtilis. J. Biochem. 89:1589-1591.\)
