Genetic Analysis of *acrA* and *lir* Mutations of *Escherichia coli*

JOAN M. HENSON† and JAMES R. WALKER*

Microbiology Department, The University of Texas at Austin, Austin, Texas 78712-1095

Received 28 January 1982/Accepted 19 August 1982

An analysis of *acrA* (acriflavine- and methylene blue-sensitive) and *lir* (lincomycin- and erythromycin-sensitive) mutants of *Escherichia coli* indicated that these mutations are probably within the same gene.

Mutations in the *acrA* gene of *Escherichia coli* confer several phenotypic traits upon a strain, including sensitivity to acridine orange and methylene blue dyes (3, 4, 6). The *acrA* locus was assigned a map position at min 10 between *tsx* (min 9) and *purE* (min 12) on the basis of P1 phage transduction experiments (4, 6). *lir* strains of *E. coli* have been isolated as lincomycin- or erythromycin-sensitive mutants. Interrupted-mating experiments suggested that the *lir* locus was at a map position clockwise of the *lac* operon (min 8) (1). In an effort to identify genes that are near the *dnaZ* and *dnaX* loci at min 10.4 to 10.5, we tested λ *dnaZ*+ transducing phages (7) for their ability to complement *acrA* and *lir* mutations. These mutations were not separated by any of the phages. Two phages transduced *acrA*+ (methylene blue insensitivity) to an *acrA* recipient and *lir*+ (lincomycin insensitivity) to a *lir* strain; six other λ *dnaZ*+ phages carried neither *acrA*+ nor *lir* (Table 1). This identical pattern of transduction of *lir*+ and *acrA*+ by these phages suggested that *lir* and *acrA* might be alleles. Evidence in support of this conclusion was provided by the finding that an *acrA* mutant (strain JE16) was sensitive to low levels (100 to 200 μg/ml) of lincomycin and erythromycin, and that all three of the *lir* strains tested (N33, N34, and N35) were sensitive to methylene blue (50 μg/ml). Furthermore, spontaneous *acrA*+ revertants of an *acrA* strain (JE16) and spontaneous *lir*+ revertants of three different *lir* strains (N33, N34, and N35) became insensitive to both lincomycin and methylene blue. These data, and our inability to separate the *lir* and *acrA* genes by transduction with λ *dnaZ*+ phages, indicate that *acrA* and *lir* mutations are probably within the same gene.

The order of genes in the *acrA* (*lir*) region is *tsx* *acrA* (*lir*) *dnaZ* *dnaX* *adk* *purE* (unpublished data). Nakamura and Sugamura have reported that the *acrA* gene product is a membrane protein (3) which may interact with adenylate kinase (4), the product of the *adk* gene and perhaps a membrane protein also (2). The facts that *acr* (*lir*) mutations increase sensitivity to several agents and that *acr* protein is found in the membrane suggest that mutations in this gene directly or indirectly increase the entry of these agents into cells.

Membrane protein alteration by the *acr* (*lir*) mutation could explain the observation by Apirion (1) that ribosomes prepared from *lir* mutants were more sensitive to lincomycin and erythromycin in protein synthesis in vitro than were ribosomes from *lir*+ strains. As ribosomes are known to interact with membranes (5), it is possible that the presence of altered membranes in the ribosome preparations from *lir* mutants could have accounted for those results (1).

TABLE 1. Transduction tests with λ *dnaZ*+ phages

<table>
<thead>
<tr>
<th>Transducing phage</th>
<th>E. coli recipient<sup>b</sup></th>
<th>dnaZ<sub>TS</sub></th>
<th>JE16 (acrA)</th>
<th>N35 (lir)</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ dnaZ<sup>+</sup> 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 17</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 20</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ dnaZ<sup>+</sup> 38</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

^a Phages were tested for transduction by spotting lysates onto plates spread with 10⁶ recipient cells. For *dnaZ* transduction, the procedure was that described by Walker et al. (7). For *acrA*⁺ and *lir*⁺, plates containing 50 μg of methylene blue per ml (for *acrA*⁺) or 100 μg of lincomycin per ml (for *lir*⁺) were incubated for 24 h at 37°C. Transduction was evident by growth of the recipients in the presence of the inhibitor. +, Positive; −, no transduction.

^b Recipients were made lysogenic with λ⁺.

† Present address: Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO 80309.

Vol. 152, No. 3, p. 1301-1302

0021-9193/82/121301-02$02.00/0

Copyright © 1982, American Society for Microbiology.
We thank Y. Sugino and D. Apirion for strains. This work was supported by American Cancer Society grant no. NP169 and, in part, by National Science Foundation grant no. PCM 78-07808.

LITERATURE CITED