Construction of a *Bacillus subtilis* Double Mutant Deficient in Extracellular Alkaline and Neutral Proteases

FUJIO KAWAMURA AND ROY H. DOI*

Department of Biochemistry and Biophysics, University of California, Davis, California 95616

Received 21 May 1984/accepted 3 July 1984

A mutant strain of *Bacillus subtilis* carrying lesions in the structural genes for extracellular neutral (nprE) and serine (aprA) proteases was constructed by the gene conversion technique. This mutant had less than 4% of the extracellular protease activity of the wild type and sporulated normally, indicating that neither of these sporulation-associated proteases is essential for development.

Spore formation in *Bacillus subtilis* is initiated near the end of exponential growth. During sporulation, *B. subtilis* undergoes a sequence of biochemical and morphological changes under genetic control. The appearance of at least two extracellular proteases—neutral metalloprotease sensitive to EDTA and an alkaline serine protease (subtilisin) sensitive to phenylmethylsulfonyl fluoride—is closely associated with this sequential order of gene expression (3, 9). Mutants deficient in the structural gene of the neutral protease (nprE) demonstrate that this enzyme is not essential for sporulation (7, 16). On the other hand, there are conflicting reports on whether alkaline protease plays a role in the normal development of a spore (5, 6, 13).

In this communication, we describe the construction of a double mutant carrying a deletion in the alkaline protease gene (ΔaprA3) and an uncharacterized lesion in the neutral protease gene (nprE18). The data show that neither extracellular protease is required for normal sporulation in *B. subtilis*.

We have recently reported the cloning, genetic mapping, and sequencing of the S fragment containing the promoter proximal half of the extracellular alkaline protease gene (1, 17). (This gene was previously called aprE in reference 17.) As shown in Fig. 1, we constructed plasmid pUBHSA3, which deleted a 178-base-pair HpaI fragment encoding part of the leader peptide of alkaline protease. We predicted from the sequence data (17) that this deletion would result in a truncated leader peptide of 25 amino acid residues.

A list of *B. subtilis* strains used is shown in Table 1. To construct a neutral protease- and alkaline protease-deficient double mutant (nprE18ΔaprA3), we first transferred the nprE18 and nprR2 mutations from NT18 to DB100 (NIG1121) and obtained DB102 (nprE18 nprR2 his). It has been shown that competent cells of *B. subtilis* have a strong correction system for mismatched paired DNA resulting in gene conversion (4). We therefore next applied the gene conversion technique to transfer the 178-base-pair HpaI deletion (ΔaprA3) into the chromosome of a neutral protease-deficient mutant, DB102 (nprE18 nprR2). We transformed competent cells of DB102 with pUBHSA3 DNA and selected kanamycin-resistant (Km) transformants on tryptose-blood agar base (Difco Laboratories) supplemented with 0.5% glucose and 5 μg of kanamycin per ml. We then assayed protease production on Schaeffer sporulation agar plates (12) containing 5 μg of kanamycin per ml and 2% skim milk. Four of 200 Km transformants showed no extracellular protease activity and retained the pUBHSA3 plasmid, indicating that the frequency of gene conversion was 2%. Two protease-deficient Km transformants were cured of the plasmid by allowing them to sporulate in Schaeffer sporulation medium. After incubation at 37°C for 24 h, cells were heated at 80°C for 10 min and plated on tryptose-blood agar base. Km cells cured of the plasmid appeared at a frequency of about 2%. Two of these were designated DB104 and DB105 (nprE18 nprR2 aprA3).

We used Southern blotting (14) to confirm that these strains carried the expected deletion in the S fragment. To visualize the 1.2-kilobase HindIII (S fragment) and the 1-kilobase HindIII fragment (ΔaprA3), we exposed the nitrocellulose strip containing HindIII-digested *B. subtilis* chromosomal DNA from DB102, DB104, and DB105 to radiactively labeled M13mp9 containing the S fragment (Fig. 2). The 178-base-pair deletion in the S fragment was introduced into the chromosome of DB102.

Table 2 shows the activities of extracellular protease and the sporulation frequencies of DB101, DB102 (nprE18 nprR2), DB104 (nprE18 nprR2 ΔaprA3) and DB105 (nprE18 nprR2 aprA3). Only 2 to 4% of the protease activity of the wild type was found in the supernatants from cultures of DB104 and DB105. As pointed out by Stahl and Ferrari (15), a certain level of protease activity was expected because of cell lysis and release of intracellular proteases during growth and because of the secreted esterase (bacillopeptidase F), which was recently reported by Roitsch and Hageman (10).

Table 1. Bacillus subtilis strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT18</td>
<td>purB6 metB5 trpB3 Strt nprE18 nprR2</td>
<td>K. Yamane (16)</td>
</tr>
<tr>
<td>DB100</td>
<td>his metB</td>
<td>Y. Sadaie (11)</td>
</tr>
<tr>
<td>DB101</td>
<td>his</td>
<td>NT18ΔΔ1DB100</td>
</tr>
<tr>
<td>DB102</td>
<td>his nprR2 nprE18</td>
<td>NT18ΔΔ1DB100</td>
</tr>
<tr>
<td>DB103</td>
<td>his nprR2 nprE18</td>
<td>pUBHSA3ΔΔ1DB102</td>
</tr>
<tr>
<td>DB104</td>
<td>his nprR2 nprE18 ΔaprA3/pUBHSA3</td>
<td></td>
</tr>
<tr>
<td>DB105</td>
<td>his nprR2 nprE18 ΔaprA3</td>
<td></td>
</tr>
</tbody>
</table>

* Symbols for genetic crosses are (t) transformation and (c) transformation with relevant donor marker transferred by conjugation during selection for unlinked marker.

* Corresponding author.
It is evident from Table 2 that both extracellular proteases, neutral protease (nprE) and alkaline protease (aprA), are not required for normal sporulation in B. subtilis.

The extracellular neutral and alkaline protease-deficient mutant described here should be useful for the excretion of useful foreign peptides as well as for the purification of proteins from B. subtilis.

Table 2. Activities of extracellular proteases and sporulation frequency

<table>
<thead>
<tr>
<th>Strain</th>
<th>Activity of proteases (%)</th>
<th>Viable cells per ml</th>
<th>Spores per ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB101</td>
<td>100</td>
<td>5.3 x 10^9</td>
<td>4.1 x 10^9</td>
</tr>
<tr>
<td>DB102 (nprE18)</td>
<td>65</td>
<td>1.0 x 10^9</td>
<td>8.8 x 10^9</td>
</tr>
<tr>
<td>DB104 (nprE18 ΔaprA3)</td>
<td>2.6</td>
<td>1.0 x 10^9</td>
<td>7.9 x 10^9</td>
</tr>
<tr>
<td>DB105 (nprE18 ΔaprA3)</td>
<td>4.1</td>
<td>9.1 x 10^9</td>
<td>7.6 x 10^9</td>
</tr>
</tbody>
</table>

*Protease activity in the supernatant of T3 (3 h after end of exponential growth) culture in 2X SG (5) medium was measured by the method of Millet (8). Cells were inoculated into 2X SG medium at an initial absorbancy at 660 nm of 0.08 and incubated for 24 h at 37°C with shaking. Heat-resistant spores were counted by plating the cells on tryptose-blood agar base medium supplemented with 0.5% glucose after heating for cells for 10 min at 80°C.

This research was supported in part by National Institutes of General Medical Sciences Grant GM-19673 and National Science Foundation Grant PCM82-18304.

We thank K. Yamane for providing B. subtilis NT18 and Y. Sadaie for B. subtilis (his metB).

LITERATURE CITED

5. Leighton, T. J., and R. H. Doi. 1971. The stability of messenger...

