Transport of Ca\(^{2+}\) by \textit{Yersinia pestis}\(^\dagger\)

ROBERT D. PERRY\(^\ddagger\) AND ROBERT R. BRUBAKER\(^\ast\)

Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824-1101

Received 3 April 1987/Accepted 13 July 1987

Low-calcium-response, or Lcr, plasmids of \textit{yersinia} are known to promote an \textit{in vitro} nutritional requirement for 2.5 mM Ca\(^{2+}\) at 37°C which, if not fulfilled, results in cessation of growth with induction of virulence functions (Lcr\(^+\)). The mechanism whereby Ca\(^{2+}\) regulates this metabolic shift is unknown. Radioactive Ca\(^{2+}\) was not actively accumulated by \textit{yersinia} but was excluded by an exit reaction analogous to those described for other bacteria. Nevertheless, cultivation at 37°C with 0.1 mM Ca\(^{2+}\), a level insufficient to prevent restriction of cell division, promoted significantly more binding of the cation by Lcr\(^+\) organisms than by plasmid-deficient Lcr\(^-\) mutants. Accordingly, Lcr\(^+\) \textit{yersinia} may possess unique ligands capable of recognizing Ca\(^{2+}\).

Low-calcium-response, or Lcr, plasmids of wild-type \textit{Yersinia pestis}, the causative agent of bubonic plague, and of the closely related enteropathogenic species \textit{Yersinia pseudotuberculosis} and \textit{Yersinia enterocolitica} are known to promote an \textit{in vitro} nutritional requirement at 37°C for 2.5 mM Ca\(^{2+}\) (Lcr\(^+\)). An insufficiency of the cation results in cessation of cell division accompanied by maximum induction of virulence functions, including V and W antigens, certain outer membrane proteins of \textit{yersinia}, and a class of small acidic cytoplasmic peptides (4, 10, 16, 19). Restriction of growth in this environment is independent of phosphorylated guanosine regulatory nucleotides but nevertheless reflects ordered decreases in ribonucleoside triphosphate pools, reduction of adenylate energy charge, and shutdown of stable RNA synthesis (9, 21). The mechanism accounting for these changes has not yet been defined, but an alteration in the specificity of RNA polymerase is one of many possibilities. The studies presented here were performed to define the metabolism of Ca\(^{2+}\) by \textit{yersinia} and thus to set limits to the role of the cation in regulating the growth and synthesis of virulence functions.

Slopes of tryptose blood agar base (Difco Laboratories, Detroit, Mich.) were incubated at 26°C for 1 day (\textit{Y. pseudotuberculosis} PB1 [7] and \textit{Y. enterocolitica} WA [8]) or 2 days (\textit{Y. pestis} EV76 [6]) after direct inoculation from liquid stocks of buffered glycerol held at −20°C (3). Bacteria were suspended and appropriately diluted in 0.033 M potassium phosphate buffer (pH 7.0; phosphate buffer) for use as inocula or for determination of optical density and viability. The chemically defined medium of Higuchi et al. (13) as modified by Zahorchak et al. (20) was used in all experiments. Ca\(^{2+}\) was either omitted or added at a concentration of 4.0 mM to provide a permisive growth condition at 37°C; 20 mM Mg\(^{2+}\) was present in all cases. At least one transfer at 26°C was performed to ensure full adaptation before the organisms were grown for use in experiments. Cultures were prepared in Erlenmeyer flasks in a liquid volume never exceeding 1/10 that of the flask; these cultures were aerated at 200 rpm in a model G76 Gyrotory water bath shaker (New Brunswick Scientific Co., Inc., Edison, N.J.). Bacteria were inoculated at an optical density of 0.1 at 620 nm.

\textit{Yersinia} in phosphate buffer were used to prepare cultures in defined medium without added Ca\(^{2+}\), and these cultures were incubated overnight at 26°C. Samples from this first transfer were used to inoculate second cultures in medium containing 4.0 mM or no added Ca\(^{2+}\). After cultivation at 26 or 37°C, the organisms were harvested by centrifugation (10,000 x g at 4°C) when the optical density was 1; this value corresponded to the maximum obtained under restrictive conditions. The bacteria were then washed twice by centrifugation in a modified calcium transport buffer (17) composed of 0.4% d-glucose, 140 mM KCl, 10 mM Tris base, and 10 mM K\(_2\)HPO\(_4\) adjusted to pH 7.8 with HCl; the final suspension was brought to an optical density of 1. Reaction mixtures were prepared in 125-ml Erlenmeyer flasks and consisted of 7.8 ml of cell suspension, 1.6 μmol of 45CaCl\(_2\) (0.1 μCl/μmol; New England Nuclear Corp., Boston, Mass.), and sufficient distilled water to yield a final volume of 8.0 ml; in some cases the energy inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added at a final concentration of 0.1 μmol/ml. After incubation at 37°C for 5 min, the reaction was started by the addition of 45Ca\(^{2+}\). Samples (0.5 ml) were collected at intervals of 15 min, filtered (0.22-μm pore size; Millipore Corp., Bedford, Mass.), and washed twice with 5 ml of calcium transport buffer containing 2 mM unlabeled CaCl\(_2\), and radioactivity was determined with a liquid scintillation spectrometer. Ca\(^{2+}\) was not accumulated by either Lcr\(^+\) or Lcr\(^-\) cells of \textit{Y. pestis} grown at 37°C in either the presence or absence of the cation (Fig. 1). In contrast, limited accumulation occurred if the organisms received CCCP. Essentially identical results were obtained with Lcr\(^+\) and Lcr\(^-\) \textit{Y. pestis} grown at 26°C with or without added Ca\(^{2+}\) and with \textit{Escherichia coli} K-12 and Lcr\(^+\) and Lcr\(^-\) cells of \textit{Y. pseudotuberculosis} cultivated at 26 or 37°C in the presence or absence of Ca\(^{2+}\) (data not shown). These results demonstrated that neither growing nor restricted \textit{yersinia} accumulate significant Ca\(^{2+}\).

To prove that the uptake of Ca\(^{2+}\) by \textit{yersinia} poisoned with CCCP (Fig. 1) reflected inhibition of exit, organisms were grown through two transfers in defined medium at 26°C without added Ca\(^{2+}\) and inoculated into fresh cultures in medium containing 4.0 mM or no added Ca\(^{2+}\). After incubation for 6 h at 37°C, the bacteria were harvested, washed twice with calcium transport buffer lacking glucose, and then suspended in this buffer at an optical density of 2. The

* Corresponding author.
\dagger Journal article no. 11671 from the Michigan Agricultural Experiment Station.
\ddagger Present address: Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, LA 71130.
permits growth of Lcr' yersiniae at 37°C but was in excess throughout the determinations of optical density and radioactivity. Samples (0.5 ml) were taken at intervals and filtered; the membranes were then washed twice with 25 mM Tris hydrochloride (pH 7.5) containing 2 mM unlabelled CaCl₂ before radioactivity was determined. Both Lcr' and Lcr- organisms maintained a constant ratio of bound 45Ca²⁺ to cell mass during growth under permissive conditions. For example, with added 0.1 mM ⁴⁵Ca²⁺, this value (nanomoles of bound Ca²⁺ per unit of optical density) was about 0.25 for both Lcr' and Lcr- organisms grown at 26°C (Fig. 3A) and for Lcr- cells grown at 37°C (Fig. 3C). Similarly, with added 4.0 mM ⁴⁵Ca²⁺, the ratio was approximately 3 for both Lcr' and Lcr- organisms during growth at 26°C (Fig. 3B) and at 37°C (Fig. 3D). However, with added 0.1 mM ⁴⁵Ca²⁺, a significant increase in ratio from 0.25 to 0.35 was noted during restriction of Lcr- cells at 37°C (Fig. 3C).

Cursory attempts were made to define the ligands accounting for this ability of restricted Lcr' yersiniae to bind about 70% more Ca²⁺ than did Lcr- mutants. Although the results of initial determinations suggested that the organisms expressed calmodulinlike activity (5), these observations were not substantiated by further study. Similarly, attempts to show distinctions in the ability of lipopolysaccharides from Lcr' and Lcr' yersiniae to bind Ca²⁺ were not successful.

Additional characterization of this interaction is in progress.

It is surprising that Lcr' yersiniae require a millimolar level of Ca²⁺ for multiplication at 37°C, since procaryotes can typically undergo vegetative growth in media containing only trace levels of this cation. Although Ca²⁺ is actively transported by Bacillus species during sporulation, it is excluded from the cytoplasm of these species, E. coli, and presumably other bacteria during vegetative growth where it undergoes elimination via energy-dependent exit reactions (1, 12, 17). Before this report, the possibility existed that yersiniae might, in a reaction analogous to that in Bacillus species, accumulate Ca²⁺ for some unique function such as carrying bicarbonate anions (18). The evidence presented here, however, demonstrated that the cation is metabolized in yersiniae by reactions typical of other procaryotes. Nevertheless, Ca²⁺ does regulate complex changes in these organisms that probably serve to dictate distinct responses to Ca²⁺-rich extracellular host environments and Ca²⁺-deficient mammalian intracellular fluids (4, 15). Resolution of this role will require definition of the reaction that promotes

FIG. 1. Uptake of ⁴⁵Ca²⁺ by Y. pestis EV76 previously cultivated at 37°C in defined medium under restrictive conditions without added Ca²⁺ (A) or permissive conditions with 4.0 mM Ca²⁺ (B). Symbols: ○, Lcr' cells without CCCP; ●, Lcr' cells without CCCP; ▲, Lcr' cells with CCCP (100 μM); and △, Lcr- cells with CCCP.

FIG. 2. Release of internalized ⁴⁵Ca²⁺ by Lcr' cells of Y. pestis EV76 into buffer containing d-glucose (0.4%) (●) or CCCP (100 μM) (○) after growth at 37°C without added Ca²⁺ or release into buffer containing d-glucose (△) or CCCP (▲) after growth at 37°C with 4.0 mM Ca²⁺.

suspension was brought to 0.4 mM with ⁴⁵Ca²⁺ and incubated overnight at 4°C to permit accumulation of the cation. A 5-ml sample was added to 5 ml of buffer at 37°C in a 125-ml Erlenmeyer flask which then received either glucose or CCCP at a final concentration of 0.4% or 100 μM, respectively. The flasks were incubated at 37°C, and samples were removed and assayed for radioactivity as described above. Lcr- cells of Y. pestis rapidly eliminated internalized Ca²⁺ after the temperature shift unless CCCP was present (Fig. 2), in which case additional cation accumulated in a manner resembling that shown for poisoned cells in Fig. 1. Analogous results were obtained for Lcr- cells of Y. pestis and for E. coli K-12 (data not shown). Results with Y. pseudotuberculosis PB1 and Y. enterocolitica WA were also similar except that less ⁴⁵Ca²⁺ accumulated during storage at 4°C, presumably because of an increased level of endogenous metabolism by these species at low temperature.

It was evident from the studies described above that organisms grown with unlabeled Ca²⁺ accumulated less ⁴⁵Ca²⁺ in the cold than did those cultivated without the cation. This result would be expected if ⁴⁵Ca²⁺ added to washed cells was unable to compete for binding sites or to enter pools occupied by the unlabeled cation. To verify this point and to compare the binding capacity of Lcr' and Lcr- cells of Y. pestis for the cation, organisms in phosphate buffer were inoculated into defined medium containing either 0.1 mM (0.6 μCi/ml) or 4.0 mM (2.0 μCi/ml) ⁴⁵Ca²⁺ and cultivated at 26°C for two transfers. The approximately 10 generations of growth that occurred during this process were sufficient to ensure that the bacteria had achieved a constant specific activity with respect to ⁴⁵Ca²⁺. The organisms were then inoculated into third transfers containing identical concentrations of ⁴⁵Ca²⁺, and optical density and radioactivity were monitored during growth of parallel cultures at 26 and 37°C. The lower concentration of ⁴⁵Ca²⁺ was not sufficient to
Lcr⁺-specific binding of Ca²⁺. Mutation to rifampin resistance is known to reflect alteration of RNA polymerase (14). It is probably significant that in yersinia this chromosomal mutation can promote expression of the Lcr⁺ phenotype (2) and that in E. coli it can result in a temperature-dependent requirement for Ca²⁺ (11).

We gratefully acknowledge the technical assistance of Janet M. Fowler.
This research was supported by Public Health Service grant AI 19353 from the National Institute of Allergy and Infectious Diseases.

LITERATURE CITED

FIG. 3. Optical density (D) and nanomoles of ⁴⁰Ca²⁺ bound per milliliter (A) for Lcr⁺ cells and optical density (C) and nanomoles of ⁴⁰Ca²⁺ bound per milliliter (D) for Lcr⁻ cells of Y. pestis EV76 during growth at 26°C with 0.1 mM ⁴⁰Ca²⁺ (A), 26°C with 4.0 mM ⁴⁰Ca²⁺ (B), 37°C with 0.1 mM ⁴⁰Ca²⁺ (C), and 37°C with 4.0 mM ⁴⁰Ca²⁺ (D).