Cytochrome c$_{2}$-Independent Respiratory Growth of Rhodobacter capsulatus

FEVZI DALDAL†
Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724

Received 2 November 1987/Accepted 3 February 1988

The respiratory electron pathway of the purple, nonsulfur, photosynthetic bacterium Rhodobacter capsulatus has two branches (Fig. 1) (9, 11, 21). The “main” branch consists of two major membrane-bound, energy-conserving complexes, the ubiquinol:cytochrome c$_{2}$ oxidoreductase (also called the cyt bc$_{1}$ complex) and the cytochrome oxidase$_{420}$, and of at least one periplasmic electron carrier between these complexes, cytochrome c$_{2}$ (cyt c$_{2}$). The “alternate” branch of the respiratory pathway is less well defined, and it contains a quinol oxidase (22). R. capsulatus mutants affecting these terminal oxidases (i.e., C ox$_{410}$ and Q ox$_{260}$) have been described previously (11). The presence of one of the two oxidases appears sufficient for aerobic growth, since only double mutants lacking both of the oxidases (C ox$_{420}$ Q ox$_{260}$) are unable to grow chemoheterotrophically (11). The main respiratory branch can also be inactivated by mutations affecting the ubiquinol:cytochrome c$_{2}$ oxidoreductase (bc$_{1}$-) mutants (4). Although both the bc$_{1}$- and the C ox$_{410}$- mutants can grow chemoheterotrophically via the alternate respiratory branch (Fig. 1), the “oxidase-negative” mutants are proficient in photosynthesis but are unable to catalyze the Nadi (α-naphthol + dimethyl-p-phenylene-diamine + O$_{2}$ → indophenol blue + H$_{2}$O) reaction (11). Conversely, the “oxidoreductase-negative” mutants cannot grow by photosynthesis but can catalyze the Nadi reaction (4).

Earlier, Daldal et al. discovered that the photosynthetic growth of R. capsulatus was not drastically impaired by the absence of cyt c$_{2}$ (3). The nearly wild-type photosynthetic growth rate of a cyt c$_{2}$-negative (c$_{2}$-) mutant was mediated by direct electron transfer from the cyt bc$_{1}$ complex to the photochemical reaction center via cytochrome c$_{1}$ (cyt c$_{1}$) (14) (Fig. 1, broken vertical arrow). Further, Prince and Daldal recently showed that in the absence of both cyt c$_{1}$ and cyt c$_{2}$, electron transfer between these two complexes was completely abolished, leading to the loss of the photosynthetic growth ability (13). These studies established that, at least in this bacterium, the presence of cyt c$_{1}$ but not that of cyt c$_{2}$ is obligatory for anoxygenic photosynthetic growth (Fig. 1) (4). The question then arises as to whether the absence of cyt c$_{2}$ has any effect on chemoheterotrophic (aerobic, dark) growth. The study of this question is complicated in a wild-type strain of R. capsulatus because of the branching of the respiratory pathway (Fig. 1). However, with a mutant defective in quinol oxidase$_{260}$, aerobic, dark growth can be limited solely to the main branch. In this background the role of cyt c$_{2}$ in chemoheterotrophic growth can then be assessed by deletion of the corresponding structural gene.

R. capsulatus strains were grown on either MPYE or RCV media (10, 18). For Escherichia coli strains Luria broth or M9 medium was used (12). All media were supplemented adequately with required antibiotics as described earlier (4). Photosynthetic growth (anaerobic, with a light intensity of approximately 12 J/m2 per s) was monitored with a Klett-Summerson colorimeter, and for chemoheterotrophic growth the A$_{260}$ was measured. Gene transfer agent (GTA)-mediated crosses were performed as described earlier (4, 17) with either R121 or its derivatives, containing appropriate plasmids, as GTA-overproducing strains (19). Chromatophore supernatants were prepared and analyzed by absorption spectroscopy as described earlier (14) with a Hewlett-Packard diode array spectrophotometer (model 8452A).

R. capsulatus M6 (Q ox$_{260}$-) and M7 (C ox$_{410}$-) (Table 1), chosen as appropriate background strains to test the role of cyt c$_{2}$ in chemoheterotrophic growth, were isolated earlier by Marrs and Gest as spontaneous revertants of the respiratory-deficient strain M5 (11). Although the exact nature of the genetic lesion in these mutants is unknown, biochemical analyses have indicated that M6 and M7 are defective in the terminal oxidases of the alternate and main branches of the respiratory pathway, respectively (9, 21). To facilitate future spectroscopic studies, strains M6G and M7G, “green” derivatives of M6 and M7, were isolated by using the GTA obtained from R121 (a strain that carries a crtD mutation that leads to the accumulation of neurosporene derivatives instead of natural spheroidene and spheroidenone) as a donor. M6G is therefore virtually identical to strain ZM6, previously described by Zannoni and Marrs (20). Table 1 lists the phenotypes of M6G and M7G with respect to their ability to catalyze the Nadi reaction (11) and to their sensitivity to myxothiazol, a potent inhibitor of the quinol oxidation site (Q$_{0}$) of the cyt bc$_{1}$ complex. Interestingly, inhibition of the respiratory growth of M6G by myxothiazol (2.5 μg/ml of MPYE) indicated that the cyt bc$_{1}$ complex became indispensable for growth when respiration was limited to the main branch (Fig. 1). Further, considering that only M7G was Nadi negative, catalysis of this reaction appeared to be related primarily to the availability of a functional cytochrome oxidase rather than to the presence of its electron donors, cyt c$_{1}$ and cyt c$_{2}$ (Table 1) (4).

The c$_{2}$- derivatives of M6G and M7G were obtained by using a deletion-insertion allele of cycA (structural gene for

† Present address: Department of Biology, University of Pennsylvania, Philadelphia, PA 19104.
FIG. 1. Electron transport pathways operating between various energy-transducing components involved in different growth modes of *R. capsulatus*. Ps, Photoheterotrophic growth; Res, chemoheterotrophic growth; DMSO, anaerobic dark growth in the presence of auxiliary electron acceptors like dimethyl sulfoxide; NADH and SDH, respiratory dehydrogenases; Q/QH2, ubiquinone/ubiquinol pool; R.C, photochemical reaction center; bc1, ubiquinol:cytochrome c oxidoreductase (cyt bc1 complex); c2, cyt c2; C ox410 and Q ox260, respiratory terminal oxidases. Newly discovered cyt c2-independent pathways are indicated by broken arrows.

cyt c2 (3), originally constructed by replacing the heme-binding region of cyt c2 between amino acid residues 10 and 79 with a gene that encodes kanamycin resistance and that was derived from the transposon Tn5 (15). M6G and M7G were infected with GTA obtained from a derivative of M121 carrying this *cycA* allele on a plasmid, and kanamycin-resistant transductants were selected photosynthetically, a permissible growth condition for cyt c2 mutants (3). The strains obtained, M6G-G4/S4 (*cycA qox-260*) and M7G-G4/S4 (*cycA qox-260*) (Table 1), were analyzed for their cyt c2 content by optical spectroscopy (Fig. 2). Ascorbate-reduced minus ferricyanide-oxidized difference spectra obtained by using chromatophore supernatants clearly indicated that, like the original cyt c2 mutant MT-G4/S4 (3), strains M6G-G4/S4 and M7G-G4/S4 were devoid of cyt c2 (Fig. 2).

To determine the role of cyt c2 in respiration we compared the growth of several mutants of *R. capsulatus* (Table 1) under various conditions with either MPYE-rich medium (Table 2) or RCV synthetic medium (data not shown). As expected, the photosynthetic growth rates of various strains were similar. Further, the chemoheterotrophic growth rates of mutants defective in various components of the main or alternate respiratory pathway were not drastically different from that of a wild-type strain. Perhaps more interestingly, respiratory growth also continued at an appreciable rate (170-min doubling time at 35°C on MPYE medium) even when cyt c2 and quinol oxidase260 were both absent (Table 2, M6G-G4/S4). Further, M6G-G4/S4 was sensitive to myxothiazol under these conditions and was Nadi positive, indicating that its growth was mediated via the main respiratory branch (Fig. 1). Therefore, a cyt c2-independent electron pathway between the ubiquinol:cytochrome c oxidoreductase and the cytochrome oxidase410 must be operational during chemoheterotrophic growth of *R. capsulatus*.

The role of cyt c2 in the respiratory electron transport chain of *R. capsulatus* has been briefly investigated in the past (1). It was shown with spheroplast preparations of M6 that succinate oxidation can be partially inhibited by the addition of polyclonal antibodies against cyt c2. Since a cyt c2 derivative of M6 can still grow chemoheterotrophically, it is likely that the succinate oxidation insensitive to anti-cyt c2 antibodies corresponds to the cyt c2-independent pathway observed here.

How electrons are transferred during respiration from the cyt bc1 complex to the cytochrome oxidase in the absence of cyt c2 is not yet well known in *R. capsulatus* (Fig. 1, broken horizontal arrow). It is possible that besides cyt c2 various other c-type cytochromes also act as electron carriers between these membrane-bound complexes. The newly discovered membrane-bound or soluble c-type cytochromes, distinct from cyt c1 and cyt c2 (13), or the cytochrome oxidase410-associated cytochrome described earlier (5, 6)

TABLE 1. *R. capsulatus* strains used

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Phenotype*</th>
<th>Origin or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1131</td>
<td>crtD121</td>
<td>Nadi⁺Myx⁺</td>
<td>B. Marrs</td>
</tr>
<tr>
<td>R121</td>
<td>crtD121</td>
<td>Nadi⁺Myx⁺</td>
<td>B. Marrs</td>
</tr>
<tr>
<td>MT-G4/S4</td>
<td>crtD121Δ(cycA::kan)l</td>
<td>Nadi⁺Myx⁺</td>
<td>3</td>
</tr>
<tr>
<td>M6</td>
<td>qox-260</td>
<td>Nadi⁺Myx⁺</td>
<td>11</td>
</tr>
<tr>
<td>M7</td>
<td>cox-410</td>
<td>Nadi⁺Myx⁺</td>
<td>11</td>
</tr>
<tr>
<td>M6G</td>
<td>crtD121 qox-260</td>
<td>Nadi⁺Myx⁺</td>
<td>20; This work</td>
</tr>
<tr>
<td>M7G</td>
<td>cox-410</td>
<td>Nadi⁺Myx⁺</td>
<td>This work</td>
</tr>
<tr>
<td>M7G-G4/S4</td>
<td>Δ(cycA::kan)l cox-410</td>
<td>Nadi⁺Myx⁺</td>
<td>This work</td>
</tr>
<tr>
<td>M7-CBC1</td>
<td>crtD121Δ(petBC::spe)18</td>
<td>Nadi⁺Myx⁺</td>
<td>4</td>
</tr>
<tr>
<td>M7-G-CBC1</td>
<td>CRTD121 cox-410Δ(petBC::spe)18</td>
<td>Nadi⁺Myx⁺</td>
<td>This work</td>
</tr>
<tr>
<td>MT-GS18</td>
<td>CRTD121Δ(petBC::kan)l Δ(petBC::spe)18</td>
<td>Nadi⁺Myx⁺</td>
<td>13</td>
</tr>
</tbody>
</table>

* cox-410 and qox-260 are used to designate the genes mutated in strains M7 (aer-412-512234) and M6 (aer-412-20-512) that led to the absence of the cytochrome oxidase410 and quinol oxidase260 activities, respectively. All the other gene designations are as described previously (3, 4, 11).

* Only phenotypes related to the presence of the Nadi reaction (Nadi⁺ or Nadi⁻) (11) and to the resistance or sensitivity of chemoheterotrophic growth to myxothiazol (Myx⁺ or Myx⁻) are listed. With the exception of MT-CBC1 and MT-GS18, which cannot grow by photosynthesis, all the other strains are sensitive to myxothiazol (2.5 μg/ml) under photoheterotrophic growth conditions.
2.540 520
540 560 580 nm

FIG. 2. Ascorbate-reduced minus ferricyanide-oxidized difference spectra of chromatophore supernatants containing approximately 6.5 mg of total protein per ml obtained from MT1131 (wild type), MT-G4/S4 (c$_2^-$), M6G (Q ox$_{250}$), M6G-G4/S4 (c$_2^-$ Q ox$_{250}$), M7G (C ox$_{410}$), and M7G-G4/S4 (c$_2^-$ C ox$_{410}$) grown aerobically. The vertical bar indicates the absorbance scale.

may be the likely candidates for this role. Alternatively, the electron donor from the cyt bc$_1$ complex to the cytochrome oxidase$_{410}$ may be the cyt c$_1$ of the cyt bc$_1$ complex via a direct interaction between the complexes. Interestingly, ubiquinol oxidase supercomplexes, composed of at least a cyt bc$_1$ complex and a cytochrome oxidase, have recently been isolated from Paracoccus denitrificans (2) and from the thermophilic bacterium PS3 (16). Finally, it should be noted that cyt c$_1$-independent electron transfer pathways operating between various membrane-bound energy-transducing complexes may also exist in bacterial species other than R. capsulatus, e.g., P. denitrificans (8) and Rhodopseudomonas viridis (7).

In conclusion, the isolation of a double mutant of R. capsulatus lacking both cyt c$_2$ and quinol oxidase$_{260}$ has revealed the existence of a cyt c$_2$-independent electron pathway between the cyt bc$_1$ complex and the cytochrome oxidase$_{410}$ (Fig. 1, broken horizontal arrow). Future genetic and spectroscopic analyses will hopefully better define the characteristics of the components involved in this newly discovered respiratory pathway.

This work was supported by Public Health Service grant GM38237 from the National Institutes of Health.

LITERATURE CITED
14. Prince, R. C., E. Davidson, C. E. Haith, and F. Daldal. 1986. Photosynthetic electron transfer in the absence of cytochrome c$_2$ in Rhodopseudomonas capsulata: cytochrome c$_2$ is not

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant phenotype</th>
<th>Growth rate4 (doubling time [min]) during:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>MT1131</td>
<td>Wild type</td>
<td>126</td>
</tr>
<tr>
<td>MT-G4/S4</td>
<td>c$_2^-$</td>
<td>168</td>
</tr>
<tr>
<td>M6G</td>
<td>Q ox$_{250}$</td>
<td>150</td>
</tr>
<tr>
<td>M7G</td>
<td>C ox$_{410}$</td>
<td>162</td>
</tr>
<tr>
<td>M6G-G4/S4</td>
<td>c2^- Q ox${250}$</td>
<td>156</td>
</tr>
<tr>
<td>M7G-G4/S4</td>
<td>c2^- C ox${410}$</td>
<td>158</td>
</tr>
<tr>
<td>MT-CBC1</td>
<td>bc$_1^-$</td>
<td>NG</td>
</tr>
<tr>
<td>MT-GS18</td>
<td>c$_2^-$ bc$_1^-$</td>
<td>NG</td>
</tr>
</tbody>
</table>

4 Growth rates were determined at 35°C on MPYE-rich medium as described in the text. NG, No growth.
essential for electron flow from the cytochrome bc, complex to
copies of genes coding for nitrogenase in Rhodopseudomonas
properties of a quinol oxidase super-complex composed of a bc,
complex and a cytochrome oxidase in the thermophilic bacte-
Alignment of the genetic and restriction maps of the photosyn-
thetic region of the Rhodopseudomonas capsulata chromosome
by a conjugation-mediated marker rescue technique. J. Bacte-
18. Weaver, P. F., J. D. Wall, and H. Gest. 1975. Characterization
of Rhodopseudomonas capsulata. Arch. Microbiol. 105:207–
216.
of the gene transfer agent made by an overproducer mutant of
transduction in chromatophores from Rhodopseudomonas cap-
sulata cells grown anaerobically in the dark on glucose and
position and function of the branched oxidase system in the wild
type and respiration deficient mutants of Rhodopseudomonas
resolution of cytochromes of b type and the nature of the
CO-sensitive oxidase present in the respiratory chain of Rhodo-