Transcriptional Analysis of the Flagellar Regulon of
Salmonella typhimurium

KAZUHIRO KUTSUKAKE,1* YOSHIKAZU OHYA,2 AND TETSUO INO2
Department of Biology, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113,1 and
School of Human Sciences, Waseda University, Tokorozawa, Saitama 359,2 Japan

Received 26 September 1989/Accepted 21 November 1989

In Salmonella typhimurium, nearly 50 genes are involved in flagellar formation and function and constitute at least 13 different operons. In this study, we examined the transcriptional interaction among the flagellar operons by combined use of Mu d1(Ap' Lac) cts62 and Tn10 insertion mutants in the flagellar genes. The results showed that the flagellar operons can be divided into three classes: class I contains only the flhD operon, which is controlled by the cAMP-CAP complex and is required for expression of all of the other flagellar operons; class II contains seven operons, flgA, flgB, flhD, flhB, fla, fliE, fliF, and fliL, which are under control of class I and are required for the expression of class III; class III contains five operons, flgK, fliD, fliC, motA, and tar. This ordered cascade of transcription closely parallels the assembly of the flagellar structure. In addition, we found that the flhD defect enhanced expression of the class III operons. This suggests that the fliD gene product may be responsible for repression of the class III operons in the mutants in the class II genes. These results are compared with the cascade model of the flagellar regulon of Escherichia coli proposed previously (Y. Komeda, J. Bacteriol. 170:1575–1581, 1982).

The bacterial flagellum is composed of three structural components, a basal body, a hook, and a filament. The filament extends into the extracellular space and is connected by the hook to the basal body embedded in the cell membrane. Genetic analysis of flagellar mutants has revealed that there are nearly 50 genes involved in flagellar formation and function in both Salmonella typhimurium and Escherichia coli (24, 25). Intergeneric complementation analysis revealed functional homology in the flagellar genes between these two organisms (8, 21, 39). Genes responsible for flagellar formation are called flg, flh, fli, or flj. Except for a few genes, mutants defective in these genes are nonflagellate and some of them produce presumptive precursor structures of the flagellum (35, 36). There are three kinds of genes responsible for flagellar function, including flagellar rotation (mot), chemotaxis (che), and transmembrane signal transduction of chemotactic stimuli (tar, trg, tsr, etc.). Mutants defective in these genes produce flagellar structures indistinguishable from those of the wild-type strain. Most of the flagellar genes are clustered in three regions of the bacterial chromosome, termed regions I, II, and III. These clustered genes constitute 14 and 13 different operons in E. coli (16, 32) and S. typhimurium (22), respectively. Flagellar genes of S. typhimurium are summarized in Fig. 1.

In E. coli, Komeda (14) constructed fusions of most of the flagellar operons to the lac genes by using Mu d1(Ap' Lac) bacteriophage developed by Casadaban and Cohen (5). This phage contains the lac genes with no promoter, and its integration in a gene can result in rescue of expression of the lac genes due to the promoter of that gene. By using these operon fusions, he examined the transcriptional interaction among the flagellar operons and proposed the cascade model of the flagellar regulon. In his model, the flagellar operons are divided into six classes, depending on their transcriptional hierarchy. Recently, DNA sequence (2, 10) and biochemical (1) analyses suggested that the expression of the flagellar regulon may involve the participation of an alternative sigma factor which binds to core RNA polymerase.

In S. typhimurium there have been several reports which suggested that expression of the flagellar genes is controlled in a similar cascade mode. For example, Suzuki and Ino (34) reported that mRNA specific for fliC, which encodes flagellin, the component protein of filament, could not be detected in any nonflagellate mutants examined. However, an overall structure of the flagellar regulon has not yet been established in this organism. In our previous work (22), we isolated Mu d1(Ap' Lac) cts62 and Tn10 insertion mutants in almost all of the flagellar genes in this organism. In this study, by combined use of these two kinds of insertion mutants, we have examined the transcriptional interaction of flagellar genes. On the basis of the observed interactions, we proposed a cascade model of the flagellar regulon in which the flagellar operons are divided into three classes with respect to transcriptional hierarchy.

Flagellar gene symbols used in this report follow the new unified nomenclature for S. typhimurium and E. coli (11), and each flagellar operon is named after the gene which is transcribed first in that operon (22).

MATERIALS AND METHODS

Bacteria and phage. All the bacterial strains used were derivatives of S. typhimurium wild-type strain LT2. Tn10 insertion mutants in the flagellar genes were derived from LT2 or KK1004 (LT2 Δflj/AB) and were described previously (20, 22). Tn10 insertion mutants in cya and crp were PP1002 and PP1037 (29), respectively, which were provided by K. E. Sanderson. Mu d1 insertion mutants in the flagellar genes were derived from KK1005 (KK1004 galE) and were described in the previous report (22). Only the Lac' insertion strains were used in this study. In order to construct strains carrying both Mu d1 and Tn10 insertions in two different genes, Tn10 insertion mutations were introduced into the Mu d1 insertion strains by P22-mediated transduction, which was performed by using P22HTint phage as described previously (22, 23).

* Corresponding author.
examined on minimal agar plates containing X-Gal (Table 1). As expected, they were all Lac−, indicating that transcription of all the flagellar genes is positively controlled by cAMP-CAP complex.

Transcriptional interaction of the flagellar operons. Tn10 insertion mutations in flagellar genes were introduced into strains carrying fusions of flagellar genes to the lac genes, and expression of the lacZ gene in the resulting double-insertion mutants was examined on minimal agar plate containing X-Gal. The results are summarized in Table 1. Insertions in the different genes in the same operon gave the same results, which suggests that the internal signals of transcription within the polycistronic operons, if any, may not be so significant in our experimental system used here. Based on the positive interaction of transcription, the flagellar operons can be divided into three classes. Class I comprises only the flhD operon. This operon did not require functions of any other flagellar genes for its transcription, and genes in it were required for expression of all of the other flagellar operons. Class II includes seven operons, flgA, flgB, flhB, fliA, fliE, fliF, and fliL. Their expression required the functions of the class I operon, and their functions were required for expression of the class III operons. Class III comprises five operons, flgK, flhD, fliC, motA, and tar. Their expression needed functions of the class I and class II operons, and their functions were not responsible for expression of the other operons.

Tn10 insertion mutations in some of the class II genes, such as flgA, flgH, flgI, flgJ, and flgK, were found to allow the class III operon to be expressed partially. Even the null mutants in these genes, including Tn10 insertion ones, produce flagella at a low frequency, probably because these gene products are not absolutely required for flagellar formation and function (our unpublished results). Therefore, it is likely that this partial expression may be due to leakiness of the mutations.

One surprising finding from this experiment was that the flhD mutation enhanced expression of the other class III operons. This suggests that the gene product of the flhD operon may have an activity to repress the class III operons, although all the genes responsible for flagellar formation including the flhD gene, have been identified as the positive factors for the appearance of the flagellar structures. We propose that this repressible activity be designated as rfa (repression of flagellar operons).

Quantitative assay of β-galactosidase. In order to obtain quantitative data on expression of the lacZ gene, the activity of β-galactosidase was measured in representative fusion strains. For this purpose, we used strains which carried Mu d1 insertions in most promoter-proximal genes available in the individual operons. For representatives of lac fusion strains in the flhD and tar operons, we used Mu d1 insertion mutants in the fliM and cheR genes, respectively, because we had not established Mu d1 insertion mutants in either flhD or tar. For those of the other operons, we used strains carrying Mu d1 insertions in the genes which are transcribed first in the corresponding operons. First, the activities in the strains carrying no Tn10 insertion mutation were compared. In general, the operons, gene products of which have been known to constitute flagellar structures (the flgB, flhD, flgK, and fliC operons) or to be involved in flagellar function (the motA and tar operons), had higher activity, although the flhD operon showed an exceptionally high activity.

We also measured the activity in the double-insertion mutants. The results shown in Table 2 are essentially equivalent with those obtained by the qualitative experiment in

FIG. 1. Flagellar genes in *S. typhimurium* (11, 21, 24, 25, 29). (A) Flagellar genes are shown on the chromosomal map. Genes responsible for catabolite gene activation, cya and crp, are also indicated. (B) The operon structure of clustered flagellar genes are indicated by arrows.

RESULTS

Effect of cya and crp mutations on the expression of flagellar genes.

The production of the flagellum in *E. coli* and *S. typhimurium* has been shown to be under positive control from the cAMP-CAP complex (17, 30). In order to confirm this, we introduced a cya::Tn10 or crp::Tn10 mutation into Mu d1 insertion mutants in flagellar genes and expression of the lacZ gene in the resulting double-insertion mutants was

<table>
<thead>
<tr>
<th>Region I</th>
<th>Region II</th>
<th>Region III</th>
<th>H2 region</th>
</tr>
</thead>
<tbody>
<tr>
<td>flgA</td>
<td>flhA</td>
<td>flgA</td>
<td>flhB</td>
</tr>
<tr>
<td>flgB</td>
<td>flhB</td>
<td>flhA</td>
<td>flhB</td>
</tr>
<tr>
<td>flgC</td>
<td>cheZ</td>
<td>flhC</td>
<td>cheZ</td>
</tr>
<tr>
<td>flgD</td>
<td>cheY</td>
<td>cheC</td>
<td>cheY</td>
</tr>
<tr>
<td>flgE</td>
<td>cheB</td>
<td>cheC</td>
<td>cheB</td>
</tr>
<tr>
<td>flgF</td>
<td>tar</td>
<td>flhD</td>
<td>tar</td>
</tr>
<tr>
<td>flgG</td>
<td></td>
<td>fliG</td>
<td></td>
</tr>
<tr>
<td>flgH</td>
<td></td>
<td>fliH</td>
<td></td>
</tr>
<tr>
<td>flgI</td>
<td></td>
<td>fliI</td>
<td></td>
</tr>
<tr>
<td>flgJ</td>
<td></td>
<td>fliJ</td>
<td></td>
</tr>
<tr>
<td>flgK</td>
<td>fliC</td>
<td>flhC</td>
<td>fliC</td>
</tr>
<tr>
<td>flgL</td>
<td></td>
<td>fliJ</td>
<td></td>
</tr>
</tbody>
</table>

Media and culture conditions. Minimal medium, minimal agar plate, L broth, and L broth agar plate were prepared as described previously (22, 23). Ampicillin and tetracycline were used at final concentrations of 25 and 20 μg/ml, respectively. 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) was used at a final concentration of 25 μg/ml. Throughout this study, bacterial cells were grown at 30°C.

β-Galactosidase assay. β-Galactosidase activities in toluene-treated cells were assayed by the method of Miller (26). The enzyme units reported here were the average of at least five independent experiments. The results of the individual assays were all within 20% of the reported averages. The endogenous β-galactosidase activity of the parental strain KK1005 was 1.0 U under the conditions used in this study.
which minimal agar plate containing X-Gal was used. The fliD mutation was found to enhance two to six times the expression of the class III operons.

DISCUSSION

By using fusions of flagellar operons to the lac genes, we have analyzed the effects of mutations in flagellar genes on the expression of each flagellar operon. The operon fusions were produced by insertion of Mu d1 at various flagellar genes, and Tn10 insertion mutations were introduced into these fusion strains. In our experimental system, we could not examine the autogenous regulation of flagellar operons because the lac fusion strains used were defective in the genes at which Mu d1 inserted and in the downstream genes in the same operons. However, the results shown in Tables 1 and 2 suggest the positive fashion of regulation and categorize flagellar operons into three classes. On the basis of these results, we constructed a hypothetical scheme for the interaction of flagellar operons in the flagellar regulon of *S. typhimurium* (Fig. 2A). Only the fliD operon belongs to class I. This operon contains two genes, fliD and fliC, both of which have been postulated to regulate in a positive fashion expression of all of the other flagellar genes (31). Furthermore, expression of this operon has been thought to be controlled positively by cAMP-CAP complex (17, 30). Our results clearly confirmed these presumptions. Except for fliA, which is responsible for filament formation, all of the genes in the class II operons have been shown to be involved in hook-basal body complexes in the morphogenic pathway of flagellar structure (35, 36). On the other hand, genes in the

<table>
<thead>
<tr>
<th>Tn10 insertion</th>
<th>MuI(AP+Lac)ctd82 insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>++ +</td>
</tr>
</tbody>
</table>
class III operons are responsible for formation of the filament, the final step of flagellar assembly (the flgK, flhD, and fliC operons) or function of the complete flagellum (the motA and tar operons). These facts indicate that the cascade of the flagellar regulon closely parallels the assembly hierarchy of the flagellar structure. Therefore, we propose that classes I, II, and III be called the early, middle, and late flagellar operons, respectively (Fig. 2A).

Our scheme presented here is slightly different from that of E. coli described by Komeda (14). In our model, the flagellar regulon consists of only one sequential pathway with three steps of transcription (Fig. 2A). On the other hand, according to the Komeda scheme, the flagellar regulon shows a branching cascade in which the flagellar operons are divided into six classes, classes 1 through 6 (Fig. 2B). It is possible that this difference may reflect species specificity between S. typhimurium and E. coli, because it is conceivable that the organisms differ in the details of the regulatory hierarchy. However, according to the Komeda model, the flgJ gene (class 4) should be expressed only after the operons responsible for formation of hook-basal body structures (class 3) were expressed, which is inconsistent with the results showing that function of the flgJ gene is required for the very early stage in the morphogenic pathway of hook-basal body (35, 36). In our earlier work (22), we showed that the flgJ gene of S. typhimurium does not form an independent operon but belongs to the flgB operon. This result was supported further by a recent DNA sequence analysis of the upstream region of the flgJ gene (12). If we assume that the flgJ gene might belong to the flgB operon in E. coli as well as in S. typhimurium, the schemes of the flagellar regulon would be very similar between these two organisms. Correlations of the classes between the two schemes are as follows (the former is of the Komeda scheme, and the latter is of ours): class 1 to class I, classes 3 and 4 to class II, classes 5 and 6 to class III. Of the class 2 operons, flgA belongs to class II and flhD belongs to class III. However, we believe that our classification is correct even in E. coli, because at least one flgA mutation of E. coli has been shown to reduce expression of the class 5 and class 6 operons (15) and the upstream region of flhD of E. coli displays the consensus sequence for the class III promoter (see Fig. 3).

Recently, DNA sequence data on the upstream regions of E. coli and S. typhimurium flagellar operons have been accumulated. Comparison of these sequences revealed the promoter structures specific for flagellar operons which should be recognized by RNA polymerase containing an alternative sigma factor (2, 10). In the present work, we divided the flagellar operons into three classes. This suggests that there may be three different types of regulation of gene expression specific for each class. Because we can assume that this difference should be reflected by the difference in

TABLE 2. Activity of β-galactosidase in the fusions of flagellar operons to the lac genes

<table>
<thead>
<tr>
<th>Tn10 insertion</th>
<th>flhD</th>
<th>flgA</th>
<th>flgB</th>
<th>flhB</th>
<th>fliA</th>
<th>fliE</th>
<th>fliF</th>
<th>fliM</th>
<th>flhD</th>
<th>flgK</th>
<th>fliC</th>
<th>motA</th>
<th>cheR</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.0</td>
</tr>
<tr>
<td>(190)</td>
<td></td>
</tr>
<tr>
<td>(27)</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>(16)</td>
<td>0.98</td>
<td>1.0</td>
</tr>
<tr>
<td>(3.4)</td>
<td>0.97</td>
<td>1.0</td>
</tr>
<tr>
<td>(6.7)</td>
<td>0.96</td>
<td>1.0</td>
</tr>
<tr>
<td>(2.2)</td>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td>(3.2)</td>
<td>0.94</td>
<td>1.0</td>
</tr>
<tr>
<td>(6.6)</td>
<td>0.93</td>
<td>1.0</td>
</tr>
<tr>
<td>(38)</td>
<td>0.92</td>
<td>1.0</td>
</tr>
<tr>
<td>(30)</td>
<td>0.91</td>
<td>1.0</td>
</tr>
<tr>
<td>(18)</td>
<td>0.90</td>
<td>1.0</td>
</tr>
<tr>
<td>(21)</td>
<td>0.89</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Activity of β-galactosidase is expressed as a value relative to that of the fusion strain carrying no Tn10 insertion mutation. The actual value of β-galactosidase enzyme units is shown in parentheses. Strains used were the same as in Table 1.
the sequence of the upstream regulatory sites, we compared once again the preceding sequences of flagellar operons on the basis of our classification. The results are summarized in Fig. 3. The sequences TAAA and GCGATAAA with 15-base-pair spacers, which have been supposed to be the −35 and −10 promoter consensus sequences specific for flagellar operons (10), were found to be characteristic of the upstream regions of the class III operons. Recently, Arnosti and Chamberlin (1) isolated from E. coli cells an alternative sigma factor (σII) which restores specific transcription in vitro of the tar operon of E. coli when added to core RNA polymerase. More recently, we obtained several lines of evidence supporting the theory that σII is encoded by the flaA gene (manuscript in preparation). These results suggest that σII may be specific for transcription in vivo of the class III promoter. On the other hand, the preceding regions of the class II operons, except the flaIL operon of E. coli, contain only the putative −10 sequence, which is consistent with the result reported by Bartlett et al. (2). The preceding region of the flaIL operon of E. coli seems to contain both the putative −35 and −10 sequences. Although Arnosti and Chamberlin (1) showed that RNA polymerase containing σII can transcribe in vitro the flaIL operon of E. coli, it is unlikely that this class III promoterlike sequence might be functional in the transcription in vivo, because the initiation site of transcription in vivo of this operon is different from that of transcription in vitro (Fig. 3) and the transcription in vivo of this operon does not require the function of the flaA gene (14).

Therefore, we believe that the absence of the putative −35 sequence is characteristic of the class II promoter. The sequence data suggested that the gene products of flhD and flHC may act as sigma factors (2). If this is correct, it is possible that the presumptive sigma factors encoded by these genes may be specific for transcription of the class II promoter. The preceding region of the class I operon also contains the sequence similar to the putative −10 sequence. However, because occurrence of A and C at nucleotides 1 and 5 of the −10 sequence is quite unusual, as compared with the putative −10 sequences of the other flagellar operons, it seems unlikely that this sequence might participate in the promoter structure of this operon. For the final decision, it is necessary to determine the transcription start sites of all the flagellar operons. The preceding region of the class I operon also contains the potential cAMP-CAP binding site (28). This feature is consistent with the result indicating that the transcription of this operon is positively regulated by cya and crp (Tables 1 and 2).

In the present study, we did not analyze the expression of five flagella-related operons, the trg, tsr, flfB, flfB, and hin operons, because we had not established fusions of these operons to the lac genes. The upstream sequences of the former three operons contain both TAAA and GCGATAAA consensus sequences with 15-base-pair spacers, which is characteristic of the class III promoters (Fig. 3). Because trg and tsr are responsible for flagellar function and flfB is responsible for filament formation (24, 25), the products of these three genes should function in the late stage of flagellar morphogenesis. These facts suggest that these three genes may belong to the class III operons. The flfB gene is involved in methylation of certain lysine residues of flagellin (33) and resides in region III (Fig. 1). Therefore, it is likely that flfB may also be one of the members of the flagellar regulon. The hin gene is involved in site-specific inversion of the promoter segment of the flfB operon, which is responsible for phase variation (40). The inversion has been shown to occur even in the flfB mutants (our unpublished results), which indicates that the expression of hin is controlled independently of the flagellar regulon.

Our scheme shown in Fig. 2 indicates that the expression of class III requires the functions of all of 27 genes of class II. However, it is unlikely that all of these gene products might act as activators for transcription of class III. In E. coli, Komeda (15) presented evidence that the positive controller of the later operons (classes 4, 5, and 6) is only the flaA gene among the class 3 genes and the flaA gene product functions as repressor whose action can be masked by its interaction with gene products of the class 3 operons. It is possible that only flaA may be the activator gene for class III in S. typhimurium as well as in E. coli, because among the mutants in the class II genes, only the flaA mutants produce a complete hook-based body lacking a filament portion (35, 36). In this study, we used an flaA::Tn10 mutant to analyze the effect of flaA defect on the expression of other operons. If the gene product of flaA has dual functions (one is a repressor for the expression of class III, and the other is an essential factor for formation of basal body), introduction of an flaA::Tn10 mutation should enhance the expression of the class III operons because the Tn10 insertion mutant is expected to show a null phenotype. However, the results shown in Tables 1 and 2 indicate that it also reduced expression of the class III operons. Therefore, we do not believe at present that the gene product of flaA might function as a repressor in S. typhimurium. On the other hand, we found that introduction of an flaB::Tn10 mutation

FIG. 3. DNA sequence comparison of the upstream regions of flagellar operons of S. typhimurium and E. coli. Sequences are aligned according to Helmann and Chamberlin (10) and Bartlett et al. (2). The sequences of the class I operons were adapted from the following references: E. flhD, E. flfL, E. flfH, and E. flfB (2); S. flhD (13); S. flfL and S. flfH (12); E. flID, E. flfC, S. flID, E. flfC, and S. flfJ (37); E. motA (2 and 7); E. tar (38); S. tar (28); E. trg (3); E. tsr (4); S. flaA, S. flfB, and S. flaA from our unpublished results (our nucleotide sequence data will appear in the DDBJ, EMBL, and GenBank nucleotide sequence databases under the accession numbers D00497 for flaA and D00498 for flaA and flfB). The double-underlined sequence in E. flhD is a potential cAMP-CAP-binding site (2). The boxed or underlined nucleotides indicate the start sites of transcription in vivo or in vitro, respectively, whose data were adapted from the following references: E. flhD (1 and 19); E. flIC and E. flID (9); E. tar and E. tsr (3). Although we have not analyzed expression of the trg, tsr, or flfB operons in this study, these operons were included in class III in this figure. Details are described in Discussion.

Consensus

(TAAA) N5 GCGATAA

Canonical

TGGACA N17 TATAAT -35 -10

SALMONELLA FLAGELLAR REGULON 745

Downloaded from http://jb.asm.org on August 14, 2017 by guest
enhanced expression of the class III operons. This indicates that the βID gene or an unidentified gene downstream in the βID operon may be involved in repression of the class III operons in the mutants in the class II genes. Expression of the flagellar genes in Caulobacter crescentus is also regulated in a cascade fashion (6). Recently, negative regulation was found to be superimposed on the positive control in the flagellar hierarchy of this organism (27, 38). Therefore, it is plausible that the negative regulation is a general mechanism to coordinate expression of flagellar genes and flagellar assembly in bacteria.

In the quantitative assay of β-galactosidase, we found that the operons whose gene products have been shown to constitute flagellar structures have activities about 10 times as high as those of the operons whose gene products have not yet been identified in the isolated flagellar structures (24). It is reasonable to assume that the flagellar genes whose products are required in larger quantities for flagellar assembly may be transcribed at higher rates. If so, transcription rates of flagellar genes could be coordinated with the amounts of protein products required for flagellar morphogenesis. On the other hand, the activity of the βID operon was found to be exceptionally high, although neither of the gene products of this operon is the structural constituent of flagellar structure (24). It is possible that an unidentified gene encoding a hypothetical repressor for expression of the βID operon might exist in the flagellar region. If so, the β-galactosidase activity in the βID-lac fusion strain reported here might represent that of a derepressed state, because the hypothetical repressor gene should not be expressed in that fusion strain. Examination of autogenous regulation will give some clues to know the manner of transcriptional control of the βID operon.

ACKNOWLEDGMENTS

We thank S. Harayama and R. M. Macnab for their encouragement.

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

LITERATURE CITED

