Location of a Gene (ssrA) for a Small, Stable RNA (10Sa RNA) in the Escherichia coli Chromosome

BONG-KYEONG OH, ANIL K. CHAUHAN, KATSUSHI ISONO, AND DAVID APIRION

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, and Department of Biology, Faculty of Science, Kobe University, Rokkodai, Kobe 657, Japan

Received 12 March 1990/Accepted 9 May 1990

The gene for 10Sa RNA, which is a major small, stable RNA in Escherichia coli, is a unique gene in the E. coli chromosome. The 10Sa RNA gene (ssrA) has been located between 2,760 and 2,761 kilobases on the E. coli genome.

In Escherichia coli at present, four small, stable RNAs are known: 4.5S, 6S, 10Sa, and 10Sb (M-1 RNA) RNAs (5–7, 9, 11, 13, 15). 10Sa RNA is a major small RNA that occurs in about 1,000 copies per haploid genome (11). 10Sa RNA and 10Sb RNA (the RNA of RNase P) almost comigrate in polyacrylamide gels, but they are structurally unrelated (9). The gene encoding 10Sa RNA (ssrA) was cloned into a multicycoplasmid (16) and sequenced (2); it is a monocistronic transcription unit of 362 nucleotides, with its own promoter and terminator (2).

To locate the ssrA (small stable RNA) gene in the chromosome of E. coli, a DNA fragment from pSR207 (16) that contains the 10Sa RNA gene was labeled with radioactive 32P and hybridized to a set of λ bacteriophage clones covering almost the entire E. coli genome (10). The results of this experiment indicated that the ssrA gene is carried by λ phage clones 439 and 440. However, when we compared the restriction maps of pSR207 and pSR205 (2, 16), both of which contain the ssrA gene, with the Kohara map (10), we found discrepancies with respect to some of the restriction sites. Therefore, we considered the possibility that there might be another ssrA gene in the E. coli genome. We showed this not to be the case by probing with 32P-labeled 10Sa RNA, plasmids, and chromosomal digests. The pattern of hybridization is identical for the E. coli and plasmid DNAs (Fig. 1), indicating that there is only a single ssrA (10Sa RNA) gene in the E. coli genome.

To evaluate the discrepancy between the E. coli physical restriction map (10) and the pSR205 map further, we subcloned the BamHI-EcoRI fragment from λ 439 into plasmid pE (E. Yaskowiak, M. Cotoras, G. Lee, and P. E. March, Abstr. Annu. Meet. Am. Soc. Microbiol. 1988, H32, p. 150), designating the new plasmid pSR212, and constructed a restriction map. The restriction map of pSR212 is different to some extent from the E. coli map (Fig. 2) and is identical to the pSR205 map (data not shown). The main discrepancies concern the restriction enzymes EcoRI, EcoRV, and HindIII. These results also indicate that there is not restriction site polymorphism between strains W3110 (used to construct the E. coli physical restriction map) and the strains from which plasmid pSR205 was prepared.

It is worth mentioning that strains that carry plasmid pSR212 overproduce 10Sa RNA, as do strains that carry plasmids pSR205 and pSR207 (2, 16), a further indication that the fragment of DNA cloned in these three plasmids is identical.

* Corresponding author.

FIG. 1. Expected sizes of DNA fragments that should hybridize with labeled 10Sa RNA in various restriction enzyme digests of E. coli DNA (A) and comparison of DNA fragments containing the 10Sa RNA gene in plasmids and in the whole chromosome of E. coli (B). E. coli chromosomal DNA (12) from E. coli D10 (met RNA [RNase P] and plasmid DNA (1, 8) were prepared. Equivalent amounts of DNA from E. coli and plasmids pSR207 and pSR212 were digested with a number of restriction enzymes and separated in 1.0% (wt/vol) agarose gel. A Southern hybridization (14) was carried out with Magnagraph nylon membrane with 32P-labeled 10Sa RNA purified by the procedures described by Gegenheimer et al. (4). 32P-labeled 10Sa RNA (2 × 108 cpm) was used as a probe. The membrane was air dried and exposed to X-ray film at −70°C for 10 days. Lanes: 1 to 4, 8 μg of E. coli DNA; 5 to 8, 10 ng of pSR207 DNA; 9 to 12, 17 ng of pSR212 DNA. Restriction enzyme used: 1, 5, 9, BglI; 2, 6, 10, EcoRV and HindIII; 3, 7, 11, KpnI and HindIII; 4, 8, 12, PstI and HindIII. kb, Kilobases.
FIG. 2. Comparison of restriction maps of a plasmid and the relevant part of the E. coli genome which contains the ssrA (10Sa RNA) gene. (I) pSR212. An EcoRI-BamHI DNA fragment, containing the 10Sa RNA gene from lambda phage 439 (10), was cloned into the same sites of plasmid pIE (Yaskowiak et al., Abstr. Annu. Meet. Am. Soc. Microbiol. 1988). Preparation of DNA bacteriophage clones was done as described by Davis et al. (3). (II) Part of the published physical map of the E. coli genome (10). The restriction sites found in pSR212 (I) but not indicated on the Kohara map are shown in boldface letters. The restriction sites drawn in boldfaced italicized letters in part II are EcoRI, which was not detected in pSR212, and BglII and BamHI, the order of which is reversed in pSR212. kb, Kilobases.

In summary, the 10Sa RNA gene (ssrA) is a unique gene in the chromosome of E. coli located between 2,760 and 2,761 kilobases.

This work was supported by Public Health Service grant GM19821 from the National Institutes of Health.

LITERATURE CITED