Up-Promoter Mutations in the trpBA Operon of Pseudomonas aeruginosa

CHUN-YA HAN, IRVING P. CRAWFORD,† AND CAROLINE S. HARWOOD*

Department of Microbiology, University of Iowa, Iowa City, Iowa 52242

Received 26 December 1990/Accepted 15 April 1991

In Pseudomonas aeruginosa, the operon encoding tryptophan synthase (trpBA) is positively regulated by the TrpI protein and an intermediate in tryptophan biosynthesis, indoleglycerol phosphate (InGP). A gene fusion in which the trpBA promoter directs expression of the Pseudomonas putida xylE gene was constructed. By using a P. putida F1 tode mutant carrying this fusion on a plasmid, three cis-acting mutations that increased xylE expression enough to allow the tode strain to grow on toluene were isolated. The level of xylE transcript from the trpBA promoter was increased in all three mutants. All three mutations are base substitutions located in the −10 region of the trpBA promoter; two of these mutations make the promoter sequence more like the Escherichia coli RNA polymerase σ70 promoter consensus sequence. The activities of the wild-type and mutant trpBA promoters, as monitored by xylE expression, were assayed in P. putida PpG1 and in E. coli. The up-regulatory phenotypes of the mutants were maintained in the heterologous backgrounds, as was trpI and InGP dependence. These results indicate that the P. aeruginosa trpBA promoter has the key characteristics of a typical E. coli positively regulated promoter. The results also show that the P. aeruginosa and P. putida trpI activator gene products are functionally interchangeable.

Bacteria of the genus Pseudomonas are important human and plant pathogens. The pseudomonads also have beneficial attributes, the most notable of which is their extreme metabolic versatility. The ability of this group of bacteria to catalyze commercially valuable biochemicals is being intensively investigated, and the pseudomonads also show great promise as agents of bioremediation (45). An understanding of gene expression signals typically used by these gram-negative bacteria is important if their biological potential is to be fully appreciated and would also be required for practical applications in which the expression of cloned Pseudomonas genes in heterologous bacteria, such as Escherichia coli, is mandated.

Often, Pseudomonas genes are not very well expressed in E. coli (27, 29, 34, 47). Most of the genes that have been studied in detail are positively regulated, and the requirement for specific activator proteins and effector molecules probably, at least partially, explains the observed poor expression (25, 30, 38-40, 44, 52). This explanation cannot wholly account for the effects seen however, because constitutive genes are often poorly expressed in E. coli (27). Thus it would seem likely that inefficient recognition of Pseudomonas sequences by particular components of the E. coli transcription-translation machinery represents an additional barrier to effective expression.

To date, studies of Pseudomonas gene expression have focused almost exclusively on transcription initiation. Comparisons of nucleotide sequences upstream from transcriptional start sites of Pseudomonas genes have allowed the compilation of promoter sequences. Some of these sequences show some similarity to the σ70 and/or σ54 consensus sequences of E. coli (1, 13, 47). There are also Pseudomonas promoter sequences for which no E. coli consensus similarity can be discerned (47). Because only a very small number of promoters are available for sequence comparison and because most of these are positively regulated promoters, which would be expected to show significant deviation from E. coli consensus sequences in any case (41), it is difficult to know whether promoter sequences unique to Pseudomonas species exist or whether similar sequences define functional promoters in both Pseudomonas species and E. coli.

Here, we have addressed this question by isolating and characterizing up-promoter mutations of the Pseudomonas aeruginosa trpBA operon. In P. aeruginosa and Pseudomonas putida, expression of the trpBA genes, encoding the two subunits of tryptophan synthase, is positively regulated by the substrate, indoleglycerol phosphate (InGP), and by the product of the trpl gene (8, 10, 11, 30). This is in contrast to the situation in E. coli, in which the synthesis of the trpA and trpB products is not inducible but instead is directly repressed by tryptophan (51). trpl and the trpBA operon are divergently transcribed in both Pseudomonas species; the translational start sites are separated by 103 bp in P. aeruginosa and by 110 bp in P. putida. The P. aeruginosa TrpI activator binding site and the effect of InGP on the interaction of P. aeruginosa TrpI with DNA have been examined by gel retardation, DNA footprinting, and in vitro transcription (6-8, 20).

We fused the trpBA control region from P. aeruginosa to the promoterless xylE gene carried on the expression vector pVDDX18 (28). Plasmid mutations leading to increased xylE expression were isolated by selecting for complementation of the locations of the mutations, the specific base substitutions involved, and the levels of xylE expression that the mutations conferred in an E. coli background all indicate that the trpBA promoter has the characteristics of a typical E. coli σ70-specific promoter. Our results also show that the P. aeruginosa and P. putida TrpI activator proteins are functionally interchangeable.

* Corresponding author.
† Deceased 8 October 1989.
TABLE 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristic(s)</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. putida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI07</td>
<td>todE; derived from wild-type strain F1</td>
<td>17</td>
</tr>
<tr>
<td>IC1651</td>
<td>trpE278 trpA506; derived from wild-type strain PpG1</td>
<td>Crawford laboratory</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM109</td>
<td>recA1 endA1 gyrA96 thi hsdR17 supE44 relA1 Δ(lac-proAB) (F' traD36 proAB lacP2ΔM15)</td>
<td>50</td>
</tr>
<tr>
<td>HB101</td>
<td>F' lacU66 proA2 recA13 thi-1 ara-14 lacY1 galK2 xyl-5 mtl-1 rpsL20 Δ(proE4 hsdS20 mB rB-)</td>
<td>3</td>
</tr>
<tr>
<td>IC361</td>
<td>trpE2B248A2</td>
<td>12</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRK2013</td>
<td>Km'; ColE1 replica with IncP Tra functions</td>
<td>16</td>
</tr>
<tr>
<td>pVDX18</td>
<td>IncQ Amp' (Chv') mob' xylE' (promoterless)</td>
<td>28</td>
</tr>
<tr>
<td>pMIB85</td>
<td>Cm'; trpI from strain PAC174 cloned into pACYC184; trpl expressed from its own promoter</td>
<td>8</td>
</tr>
<tr>
<td>pMI603</td>
<td>Amp'; KpnI fragment of P. aeruginosa PA01 carrying trpI and the trp-trp-PA01 intragenic region, cloned into pUC18</td>
<td>6</td>
</tr>
<tr>
<td>pHH1</td>
<td>Amp'; P. aeruginosa PA01 trpBA control region, 176-bp BssHII-EcoO19 fragment from pMI603 inserted into XbaI-digested pVDX18 by blunt-end ligation to generate a xylE transcriptional fusion</td>
<td>This study</td>
</tr>
<tr>
<td>pHHB</td>
<td>A 1,044-bp Avai fragment of p1395 (15) containing the P. aeruginosa PA01 trpG promoter inserted into the XbaI site of pVDX18 in the reverse orientation relative to xylE transcription</td>
<td>This study</td>
</tr>
<tr>
<td>pHH2</td>
<td>Amp'; pHH1 with mutation X9 (–8 T → C) in trpPw</td>
<td>This study</td>
</tr>
<tr>
<td>pHH3</td>
<td>Amp'; pHH1 with mutation X56 (–10 G → T) in trpPw</td>
<td>This study</td>
</tr>
<tr>
<td>pHH4</td>
<td>Amp'; pHH1 with mutation X57 (–8 T → A) in trpPw</td>
<td>This study</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains and plasmids used are described in Table 1.

Media and antibiotics. *E. coli* and *P. putida* were grown at 37 and 30°C, respectively. Luria broth (LB) (35) was the complete medium. Growth on toluene was tested with cells grown on plates of a defined mineral salts medium (46). Toluene was supplied as a vapor (23). Vogel-Bonner (V-B) minimal salts medium E (48) supplemented with 0.2% glucose, 0.05% acid-hydrolyzed casein, and 5 μg of tryptophan per ml was the defined medium used for all other experiments. Media were solidified with 15 g of agar (Difco Laboratories, Detroit, Mich.) per liter. Pseudomonas isolation agar (PIA), obtained from Difco, was used to select against *E. coli* donors in bacterial conjugations with *P. putida* strains.

Antibiotics were used in the following concentrations (in micrograms per milliliter): for *E. coli*, ampicillin, 100; chloramphenicol, 25; kanamycin, 50; for *P. putida*, ampicillin, 100; chloramphenicol, 500; kanamycin, 250; carbenicillin (in PIA), 1,000.

Plasmid manipulation. Procedures used for plasmid isolation and purification, restriction enzyme digestion, DNA ligation, and agarose electrophoresis were as previously described by Maniatis et al. (31). *E. coli* cells were made competent for transformation by the CaCl2 method (9). Plasmids were introduced into *P. putida* strains in triparental matings with plasmid pRK2013 providing mobilization functions (14).

Selection of cis-acting mutations in pHH1. Plasmid pHH1, which carries the trpBA control region directing expression of the promoterless xylE gene (encoding catechol 2,3-dioxygenase) was conjugated into *P. putida* FI07, a todE (3-methylcatechol dioxygenase) mutant. *P. putida* FI07(pPH1) cells were then grown overnight in LB, harvested, washed twice, and resuspended in an equal volume of 0.85% (wt/vol) NaCl. Samples (0.1 ml) of the washed cell suspensions were spread onto toluene minimal plates and incubated at 30°C. After 2 days, each plate had about 50 dark brown colonies. Seventy colonies were picked and restreaked on toluene minimal plates to verify the revertant phenotype. Plasmid DNA from each mutant was then purified and used to transform *E. coli* JM109, with selection on Luria (L)-agar plates containing ampicillin. The plasmid in each transformant was mobilized for transfer to *P. putida* FI07 in a triparental mating with *E. coli* HB101(pRK2013). Of 59 exconjugants, 4 were able to grow on toluene plates and were assumed to carry a mutant pHH1 plasmid. The trpBA control region (176 bp) from each mutant plasmid was then sequenced.

Localization of plasmid mutations. To be certain that the observed mutant phenotypes were due to the identified base changes in the sequenced *trp*BA control region and not to other unidentified changes elsewhere in the plasmids, we digested the DNA with *Hind*III and *Eco*RI and recloned the *P. aeruginosa* DNA inserts into pVDX18 to generate plasmids pPH2, pHH3, and pHH4. The catechol 2,3-dioxygenase assays reported in this paper were carried out with these constructs. Assays with strains harboring the original mutant plasmids gave very similar results.

DNA sequencing. DNA fragments were labeled by filling in protruding 5' ends, using the Klenow fragment of *E. coli* DNA polymerase I and the appropriate 32P-labeled deoxyribonucleotide triphosphate (31). Sequencing of the *trp*BA control region upstream (between the *Hind*III and *Bam*HI sites of the multiple cloning site of pVDX18) from the xylE gene was done by the dideoxy chain-termination method (31) with M13mp18 or M13mp19 as template (20)
transcriptional fusions was performed by the procedure of Maxam and Gilbert (33). In primer extension experiments, nucleotide sequencing was performed by the dideoxy-chain-termination method (43) with the Taq DNA polymerase sequencing kit from United States Biochemical Corp.

Cell extracts and catechol 2,3-dioxygenase assays. Bacterial cells were grown in V-B minimal medium plus 0.2% glucose and any other supplements or antibiotics indicated. Preparation of cell extracts was carried out by sonication and assays for catechol 2,3-dioxygenase activity were performed as described by Konyecsni and Deretic (28). One unit of catechol 2,3-dioxygenase is defined as the amount of enzyme which converts catechol to 1 nmol of 2-hydroxymuconic semialdehyde (a yellow product with a molar extinction coefficient of 4.4 × 10^4 at 375 nm) per min. The catechol 2,3-dioxygenase data presented in each of the tables are from the single trial (at least three trials) that gave the highest activities. Activities varied by as much as a factor of 4, depending on the trial. However, the relative activities between strains assayed in a given trial were always the same. The protein concentrations of cell extracts were determined by the method of Bradford (4).

Preparation of RNA. Total cellular RNA was isolated from 100-ml cultures of cells harvested by centrifugation at an A scrapped of 0.15 to 0.25, as described previously (2).

Primer extension mapping. A 31-residue oligonucleotide (5'-GAATTCGAGCTCGGTACCCGGGGATCCTCTA-3') complementary to a region of the pVDX18 multiple cloning site 59 bases from the presumed trpBA mRNA start site (6), was 5' end labeled with [γ-32P]ATP and T4 polynucleotide kinase and used in primer extension mapping of mRNA. The primer extension mapping was performed by the procedure of Sambrook et al. (42). The synthetic oligonucleotide was obtained from the Biotechnology Research Service at Northwestern University.

Northern (RNA) blot hybridization. The procedures used in Northern blot hybridization were those described by Sambrook et al. (42). Total cellular RNA was fractionated by electrophoresis through 1.2% agarose gels containing formaldehyde and then transferred to nylon membranes. The RNA of interest was detected by hybridization with the same radiolabeled synthetic oligonucleotide as was used for primer extension mapping.

RESULTS

Selection of up-regulatory mutants. Plasmid pH1 was constructed by insertion of a 176-bp BshHII-EcoO109 fragment containing the P. aeruginosa trp-trpBA control region (6) into the promoter probe vector pVDX18. The pVDX18 reporter gene, xylE, originates from the transmissible plasmid TOL, which carries a series of genes whose products are required for the degradation of toluene (18). xylE encodes a broad-substrate-specificity catechol 2,3-dioxygenase which is able to catalyze the oxidation of 3-methylcatechol as well as unsubstituted catechol (37, 49). P. putida F1 dissimilates toluene by a pathway (distinct from the TOL plasmid pathway) in which the oxidation of 3-methylcatechol by the product of the todE gene is a required step (17). Since the xylE and todE gene products have overlapping substrate specificities, one would predict that xylE would complement a todE defect. Colonies of the todE mutant P. putida F107 carrying pH1 turned yellow on glucose minimal plates when sprayed with catechol, indicating that the plasmid expressed significant background (constitutive) catechol 2,3-dioxygenase activity. Nevertheless, the trpBA control region-xylE fusion plasmid did not contribute sufficient catechol 2,3-dioxygenase activity to complement the todE mutation, because cells carrying pH1 were unable to form colonies on toluene minimal plates. Plating of P. putida F107(pPH1) cells on toluene minimal plates therefore imposed a strong selection for mutations resulting in higher levels of xylE expression. As outlined above (Materials and Methods), 59 mutant strains were isolated, 4 of which had plasmid-associated mutations. The sequence of the trp1-trpBA control region from each mutant plasmid was determined in order to locate the mutation. As shown in Fig. 1, the mutations are located in the -10 region of the trpBA operon. Two of the plasmids had identical mutations [−8 T → C].

To measure the effect of each mutation on xylE expression, we assayed catechol 2,3-dioxygenase levels in P. putida F107 carrying the three different mutant plasmids and compared them with those expressed from the parent plasmid (Table 2). As expected, all three mutations increased the levels of xylE expression.

Regulation of the mutant fusions by tryptophan and InGP. In P. aeruginosa and P. putida expression of several of the genes required for the catabolism of tryptophan (5, 32). The addition of exogenous tryptophan to growth medium will therefore decrease the intracellular concentration of the inducer (InGP) of the trpBA operon. As shown in Table 2, tryptophan, when present at a concentration that had a twofold effect on expression from the wild-type fusion, failed to repress xylE expression from the mutant fusion plasmids, indicating that the plasmid mutations provide at least partial relief from InGP dependence. To determine whether InGP had an activating effect on xylE expression from the mutant plasmids, the fusions were transferred into P. putida IC1651, a trpE trpA mutant. The trpE mutation results in loss of activity of the first specific tryptophan biosynthetic enzyme, anthranilate synthase, while the trpA mutation inactivates tryptophan synthase. Intact trpD and trpC genes catalyze the conversion of anthranilate, an intermediate of tryptophan synthesis, to InGP. As shown in Table 3, in the absence of anthranilate the mutations produce higher levels of xylE product than does the wild-type fusion. In addition, high intracellular InGP produces the presence of anthranilate induced extremely high levels of catechol 2,3-dioxygenase activity in strains bearing each of the four xylE fusion plasmids.

Assignment of the mutations to trpP. The locations of the mutations in the trpBA control region and the resulting phenotypes indicate that the plasmid mutations are up mutations in the trpBA promoter (trpP mutations). Wild-type and mutant xylE fusions had identical transcriptional start sites, as determined by primer extension analysis (Fig. 2). Thus the mutations do not create a new promoter. The location of the trpB transcriptional start site (Fig. 1) confirms the placement of the mutations at −8 and −10 in trpP. By analogy with E. coli, these mutations define the nucleotide sequence of the P. aeruginosa trpP −10 region as 5'-TAGATT-3', which agrees with the E. coli −10 consensus sequence (5'-TATAAT-3') at four positions (24).

Effect of the mutations on trpP-xylE transcription. To test directly whether the plasmid mutations increased transcription from the trpBA promoter, we used Northern blot analysis to measure the relative amounts of trpP-xylE mRNA produced in P. putida IC1651 carrying the wild-type and mutant plasmids. For each of the mutants, we found that increased catechol 2,3-dioxygenase activity correlated with higher levels of specific transcript (Fig. 3). Comparison of
the amount of trpP_b-xylE mRNA synthesized by cells grown in the presence and absence of anthranilate provides the first direct evidence that InGP regulates the trpBA operon at the transcriptional level. The mutations increased the level of uninduced gene expression and also increased induced levels at least twofold. These data as well as the data from Tables 2 and 3 also confirm that the <i>P. putida</i> and <i>P. aeruginosa</i> TrpI proteins are functionally interchangeable.

Expression of trpP_b-xylE fusions in <i>E. coli</i>. The wild-type and mutant fusions were transferred to an <i>E. coli</i> trpABE strain expressing trpI from plasmid pMIB85 in order to monitor xylE expression in the presence and absence of InGP generated from exogenous anthranilate. As shown in Table 4, the up-regulatory phenotypes of the mutants were retained in the <i>E. coli</i> background. However, the levels of activity observed were much lower than those seen in <i>P. putida</i> genetic backgrounds. Induction by InGP was also seen, and the mutations again increased levels of enzyme produced in the presence of InGP. No measurable catechol 2,3-dioxygenase activity was seen in the absence of trpI provided in trans (data not shown), indicating that transcription from the mutant trpBA control regions requires TrpI protein.

DISCUSSION

The <i>P. putida</i> todE mutant, F107, carrying a trpBA control region-xylE fusion plasmid (pHH1) was unable to grow with toluene as its sole source of carbon and energy. By selection for growth on minimal toluene plates, mutants expressing higher levels of catechol 2,3-dioxygenase were isolated. In

TABLE 2. Regulation of the trpP_b-xylE fusions by tryptophan in <i>P. putida</i> F107

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Trp fusion</th>
<th>Catechol 2,3-dioxygenase activity<sup>a</sup></th>
<th>Trp limitation<sup>b</sup></th>
<th>Trp excess<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td><1</td>
<td>ND<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>pVDX18</td>
<td>None</td>
<td>318</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>pHBB</td>
<td>Wild type</td>
<td>15</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>pHH1</td>
<td>Wild type</td>
<td>234</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>pHH2</td>
<td>X9 (−8 C)</td>
<td>1,585</td>
<td>1,695</td>
<td></td>
</tr>
<tr>
<td>pHH3</td>
<td>X56 (−10 T)</td>
<td>1,487</td>
<td>1,238</td>
<td></td>
</tr>
<tr>
<td>pHH4</td>
<td>X57 (−8 A)</td>
<td>2,398</td>
<td>2,015</td>
<td></td>
</tr>
</tbody>
</table>

^a Units of specific activity are nanomoles of 2-hydroxymuconic semialdehyde formed minute^{−1} milligram of protein^{−1} at 28°C.

^b Tryptophan was present in V-B medium at a concentration of 5 μg/ml (see Materials and Methods).

^c Tryptophan was present in V-B medium at a final concentration of 20 μg/ml.

^d ND, not determined.

TABLE 3. Enzymatic activity of trpP_b-xylE fusions in <i>P. putida</i> IC1651 (trpAE)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Trp fusion</th>
<th>Catechol 2,3-dioxygenase activity<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without anthranilate</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td><1</td>
</tr>
<tr>
<td>pVDX18</td>
<td>None</td>
<td>687</td>
</tr>
<tr>
<td>pHBB</td>
<td>Wild type</td>
<td>10</td>
</tr>
<tr>
<td>pHH1</td>
<td>Wild type</td>
<td>259</td>
</tr>
<tr>
<td>pHH2</td>
<td>X9 (−8 C)</td>
<td>4,948</td>
</tr>
<tr>
<td>pHH3</td>
<td>X56 (−10 T)</td>
<td>4,117</td>
</tr>
<tr>
<td>pHH4</td>
<td>X57 (−8 A)</td>
<td>7,803</td>
</tr>
</tbody>
</table>

^a Units of specific activity are nanomoles of 2-hydroxymuconic semialdehyde formed minute^{−1} milligram of protein^{−1} at 28°C.

^b Anthranilate, added to growth medium at a concentration of 20 μg/ml, is converted intracellularly to InGP in <i>trpAE</i> strains.
FIG. 2. Primer extension analysis of the trpP_B-xylE fusion transcripts. RNA (10 μg) was isolated from P. putida IC1651 carrying pHH1 to pHH4. The cells were grown in LB plus 100 μg of ampicillin per ml. The RNA was primed with a 31-base oligonucleotide complementary to the multiple cloning site of pVDX18. After extension with reverse transcriptase, products were separated by electrophoresis; a dideoxy sequencing ladder is shown for comparison. Lanes: 1, RNA prepared from IC1651(pHH1); 2, RNA prepared from IC1651(pHH2); 3, RNA prepared from IC1651(pHH3); 4, RNA prepared from IC1651(pHH4).

this paper, we have focused on several plasmid mutations that were found to be located in the −10 region of the trpBA promoter. In the original selection, 55 additional mutant strains were isolated, 10 of which appear to be trpl mutants, as determined on the basis of the ability of a wild-type copy of P. aeruginosa trpl to restore the wild-type phenotype (21a). Thus, the selection procedure described here should be generally useful for isolating mutations in activator genes encoded in the P. putida F107 chromosome, as well as for the isolation of up-promoter mutations.

Footprinting and gel retardation studies have indicated that InGP stimulates the expression of the trpBA operon by increasing the binding of the activator protein, TrpI, to specific sites in the trpBA control region (6, 7). xylE expression from the three trpP_B-xylE fusion mutants described herein was partially independent of InGP (Tables 2 and 3), and levels of specific mRNA were higher in each of the mutants than in cells containing the parental plasmid. Runoff transcription experiments using trpP_B DNA as the template also show that each of the mutations increases the activity of trpP_B (20). Both in vitro and in vivo results indicate,

therefore, that the plasmid mutations increase xylE expression by increasing transcription initiation.

Two of the three mutations examined (−10 G → T and −8 T → A) have an up-promoter phenotype in E. coli and also bring the sequence of the −10 region of the P. aeruginosa trpBA operon promoter (5′-TAGAT-3′) into closer similarity with the −10 consensus sequence 5′-TATAAT-3′ for E. coli σ⁷⁰-specific promoters (24). On the basis of the frequencies of nucleotides seen at −8 in E. coli promoters, the up-promoter phenotype of the third plasmid mutation (−8 T → C) would not have been predicted (22). However an up phenotype for this nucleotide change has been observed in the ant promoter of Salmonella phage P22 in the context of a down mutation in the −35 region (36). We did not isolate any mutants with base substitutions in the −35 region of trpP_B. This region shows an extremely poor match to the E. coli −35 consensus (6, 24) and may in fact be so unlike the consensus that any single mutation is unlikely to have any observable effect on promoter strength. In summary, the trpBA promoter has the features of a typical E. coli positively regulated, σ⁷⁰-specific promoter. Such a promoter is characteristically weak, since transcription of positively regulated promoters, by definition, does not proceed very well in the presence of RNA polymerase alone (41).

![FIG. 3. Effect of growth with anthranilate on the relative levels of trpP_B-xylE-specific mRNA in P. putida IC1651 cells carrying wild-type or mutant fusion plasmids. Cells were grown in V-B medium supplemented with 0.2% glucose, 0.05% acid-hydrolyzed casein, 5 μg of tryptophan per ml, and 100 μg of ampicillin per ml. Anthranilate (added at a concentration of 20 μg/ml) is converted intracellularly to InGP by strain IC1651. RNA (5 μg [total] per lane) was separated by electrophoresis, transferred to nylon membranes, and probed with a 32P-end-labeled synthetic oligonucleotide as described in Materials and Methods. Lanes: wt, RNA prepared from IC1651(pHH1); 2, RNA prepared from IC1651(pHH2); 3, RNA prepared from IC1651(pHH3); 4, RNA prepared from IC1651(pHH4).](http://jb.asm.org/)

![TABLE 4. Enzymatic activity of trpP_B-xylE fusions in E. coli IC361(pMP1885)](http://jb.asm.org/)

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Trp fusion</th>
<th>Catechol 2,3-dioxogenase activity<sup>a</sup></th>
<th>Without anthranilate</th>
<th>With anthranilate<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>pVDX18</td>
<td>None</td>
<td>2.8</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>pHHB</td>
<td>Wild type (trpG), inverted</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>pHH1</td>
<td>Wild type</td>
<td>2.2</td>
<td>104.0</td>
<td></td>
</tr>
<tr>
<td>pHH2</td>
<td>X9 (−8 C)</td>
<td>6.7</td>
<td>437.0</td>
<td></td>
</tr>
<tr>
<td>pHH3</td>
<td>X56 (−10 T)</td>
<td>5.9</td>
<td>686.0</td>
<td></td>
</tr>
<tr>
<td>pHH4</td>
<td>X57 (−8 A)</td>
<td>10.0</td>
<td>738.0</td>
<td></td>
</tr>
</tbody>
</table>

^a Units of specific activity are nanomoles of 2-hydroxyxymonocemic semialde-

^b hydroxide formed min^{−1} milligram of protein^{−1}.
The observation that the trpPA mutations had up-regulatory phenotypes in two P. putida backgrounds, as well as in the E. coli background, suggests that there is a form of Pseudomonas RNA polymerase with promoter recognition properties similar to the σ70 holoenzyme of E. coli. E. coli and P. putida RNA polymerases have been shown to display identical patterns of DNA binding with promoters (21). Recent studies (19) have shown that E. coli, P. aeruginosa, and Pseudomonas syringae RNA polymerases all initiate transcription from four bacteriophage λ promoters and also from the P. aeruginosa trpBA and trpI promoters. Moreover, the amounts of transcript formed in vitro from each of the six promoters ranked in the same order for each of the three RNA polymerases. The Pseudomonas polymerases were, however, more active with the weaker promoters than the E. coli RNA polymerase, indicating that the Pseudomonas enzymes may be more efficient than their E. coli counterpart. The reasons for this difference in efficiency are not known but could reflect a more stringent requirement of the E. coli enzyme for recognizable sequences in the −35 region.

Although the P. aeruginosa trpBA promoter is likely to be read by a Pseudomonas RNA polymerase that is similar to the E. coli σ70 enzyme, levels of expression of the trpPA-xylE fusions are still very low in E. coli in comparison with the levels expressed in P. putida backgrounds (Tables 2, 3, and 4). xylE expression in E. coli requires transcription from the trpI promoter carried on plasmid pMIB85, because TrpI is needed to activate trpP. A 10-fold lower level of transcription from both the trpI and the trpBA promoters in E. coli could account for levels of catechol 2,3-dioxygenase activity that are 100-fold lower than those measured in P. putida. The more-stringent promoter recognition properties of the E. coli RNA polymerase (19) are likely to be at least partially responsible for reduced levels of transcription from the two trp promoters. Numerous other factors, such as upstream DNA sequence elements, specific Pseudomonas host proteins, or a particular intracellular salt concentration characteristic of Pseudomonas species, could also be important for optimal promoter recognition and may either be missing or not configured properly for optimal gene expression in E. coli.

The observed low levels of catechol 2,3-dioxygenase are probably not due to enzyme instability because xylE, when cloned into E. coli expression vectors, is expressed in E. coli at levels comparable with those seen in P. putida (26).

ACKNOWLEDGMENTS

We thank G. Gussin for many valuable suggestions on this work and on the manuscript. C.-Y.H. and C.S.H. are also indebted to C. Yanofsky for helpful discussions about the direction of this work following the death of Irving Crawford and for critical reading of the manuscript. We thank V. Deretic for providing pVDX18 and D. Gibson for providing P. putida F107.

This study was supported by grant DMB 890499 from the National Science Foundation.

REFERENCES

