The \textit{divIVB} Region of the \textit{Bacillus subtilis} Chromosome Encodes Homologs of \textit{Escherichia coli} Septum Placement (MinCD) and Cell Shape (MreBCD) Determinants

A. W. VARLEY and GEORGE C. STEWART

Department of Microbiology, University of Kansas, Lawrence, Kansas 66045, and Department of Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29208

Received 4 June 1992/Accepted 7 August 1992

Mutation of the \textit{divIVB} locus in \textit{Bacillus subtilis} causes frequent misplacement of the division septum, resulting in circular minicells, short rods, and filaments of various sizes. The \textit{divIVB1} mutant allele maps to a region of the chromosome also known to encode sporulation (\textit{spolB}, \textit{spolVF}, \textit{spolIIB}) and cell shape (\textit{rodB}) determinants. This study reports the cloning and sequence analysis of 4.4 kb of the \textit{B. subtilis} chromosome encompassing the \textit{divIVB} locus. This region contains five open reading frames (ORFs) arranged in two functionally distinct gene clusters (\textit{mre} and \textit{min}) and transcribed colinearly with the direction of replication. Although sequence analysis reveals potential promoters preceding each gene cluster, studies with integrational plasmids suggest that all five ORFs are part of a single transcription unit. The first gene cluster contains three ORFs (\textit{mreBCD}) homologous to the \textit{mre} genes of \textit{Escherichia coli}. We show that \textit{rodB1} is allelic to \textit{mreD} and identify the \textit{rodB1} mutation. The second gene cluster contains two ORFs (\textit{minCD}) homologous to \textit{minC} and \textit{minD} of \textit{E. coli} but lacks a \textit{minE} homolog. We show that \textit{divIVB1} is allelic to \textit{minD} and identify two mutations in the \textit{divIVB1} allele. Insertional inactivation of either \textit{minC} or \textit{minD} or the presence of the \textit{divIVB} region on plasmids produces a severe minicell phenotype in wild-type cells. Moreover, \textit{E. coli} cells carrying the \textit{divIVB} region on a low-copy-number plasmid produce minicells, suggesting that a product of this locus may retain some function across species boundaries.

With few exceptions, procaryotes multiply by binary fission. Strict spatial and temporal regulation is needed to ensure that division occurs only when the cell reaches a certain critical mass, that septum formation divides the cell into equal halves, and that all essential genetic and biochemical components are properly partitioned. Moreover, the process must be fine-tuned to allow the bacterium to adapt to different growth conditions or to respond to potentially lethal DNA damage.

Most of what is known at the genetic level about binary fission has been learned by studying the gram-negative rod \textit{Escherichia coli}. Molecular techniques have allowed the identification of several critical components of the division apparatus and led to the development of a tentative model of how these components interact (10, 28). Several lines of evidence suggest that the \textit{ftsZ} gene product plays a pivotal role as a positive effector of cell division. Significantly, \textit{FtsZ} has been shown to localize at the newly formed septum (5).

\textit{FtsZ} also is the target of division inhibitors from at least two separate regulatory pathways (14), one of which, \textit{minB}, appears to be the principal determinant of septum placement (13). Mutation at this locus leads to the formation of circular, anucleate cells (minicells) through placement of the division septum near the cell pole (1). The \textit{minB} locus has been cloned and characterized, and the interactions of its products have been worked out in some detail. Two of its products (\textit{MinC} and \textit{MinD}) work together to inhibit septation at all potential sites, while a third (\textit{MinE}) confers specificity on MinCD by preventing inhibition at the central septation site (13). \textit{MinC} appears to be the inhibitory component, since overexpression of \textit{minC} alone causes filamentation and since \textit{MinC} can also function as a division inhibitor in association with \textit{DicB} (14, 25). \textit{MinD} plays an accessory role, enhancing the inhibitory effect of \textit{MinC} and allowing interaction with \textit{MinE} (14). Consistent with a regulatory function, \textit{MinD} has also been shown to have ATPase activity (11). How \textit{MinE} confers specificity on the MinCD inhibitor is unclear. Indeed, little biochemical evidence on the mode of action of any of these gene products exists.

Cell division genes from gram-positive organisms have not been as well studied. The \textit{Bacillus subtilis} homolog of \textit{ftsZ} has been cloned and shown to be essential for septation during both vegetative growth and sporulation (3). Nucleotide sequence analysis has also revealed that \textit{FtsZ} shows a high degree of amino acid sequence similarity to \textit{FtsZ} of \textit{E. coli} (2, 7). Consistent with a conservation of structure and function, overexpression of the \textit{Bacillus} homolog in \textit{E. coli} causes a lethal filamentation which can be overcome by increasing expression of the \textit{E. coli} gene (2).

Two loci which are associated with a minicell phenotype have been identified in \textit{B. subtilis} 168: \textit{divIVA}, located at 144\textdegree on the genetic map, and \textit{divIVB}, located at 245\textdegree (33). Mutation at the \textit{divIVA} locus results in aberrant placement of the division septum leading to a minicell phenotype formally analogous to that seen in \textit{E. coli minB} strains. In \textit{divIVB} strains, misplacement of the division septum occurs frequently, with as many as three of every four divisions being aberrant (33). Most typically, the septum forms near one pole of the cell, resulting in a small, circular minicell which lacks chromosomal DNA and is incapable of growth or division (33). Misplacement of the septum between the polar region and the normal division site also occurs, generating

* Corresponding author.
oval cells and short rods of various sizes. Apparently, a range of cell sizes is possible, suggesting that the septum may form anywhere within a zone at the central or polar septation sites. Short rods formed in this way have been reported to occasionally divide, even though they lack chromosomal DNA and do not grow (33).

In this paper, we report the cloning and sequencing of the divIVB region of B. subtilis. This region contains five open reading frames (ORFs) which can be grouped into two gene clusters based on function but which appear to be transcribed as a single unit. The downstream gene cluster is shown to be the divIVB locus and contains two genes whose products show significant amino acid homologies to MinC and MinD of E. coli. The divIVB1 mutant allele is mapped to minD, and the mutations are identified. Significantly, the divIVB locus lacks a minE homolog. Upstream of the divIVB locus is a second gene cluster homologous to the mre locus of E. coli. mreD is shown to be allelic to rodB, and the rodB1 mutation is identified.

MATERIALS AND METHODS

Bacterial strains and bacteriophages. Lambda gt-wes DNA was obtained from Bethesda Research Laboratories. Lambda gt-wes phage was obtained by transfection of E. coli with this DNA.

The wild-type strain used in this study was B. subtilis 168 trpC2 (21). CU403 (divIVB1 thyA1 thyB1 metB5) (33) and ROD104 (leuA8 rodB1) (23) were obtained from John Reeve and the Bacillus Genetic Stock Center (The Ohio State University), respectively. Strain CU403 exhibits unsatisfactorily low levels of competency for genetic transformation. To place the divIVB1 marker into a more suitable background, KUS1101 was created by transforming JH642 (pheA1 trpC2) (9) with chromosomal DNA from CU403 and selecting for pheA+ divIVB1 transformants by plating on minimal medium (42) with tryptophan followed by microscopic screening of individual colonies for minicells. A single clone was picked, and the divIVB1 marker was verified by repeating the genetic mapping to pheA. The resulting strain became highly competent and was used for all subsequent manipulations involving divIVB1.

General methods. Media and growth conditions, including antibiotic concentrations, used for the propagation and selection of E. coli and B. subtilis were as described previously (21).

B. subtilis was made competent and transformed by the method of Erickson and Copeland (16). Manipulation of plasmid and phage DNA in E. coli was performed as described by Sambrook et al. (35). Isolation of chromosomal and plasmid DNAs in B. subtilis was performed as described previously (21, 33).

Determination of the divIVB1 phenotype and photomicrography. Cells were screened for minicells essentially as described by deBoer et al. (12). B. subtilis cultures were grown at 37°C with vigorous agitation to late log phase and concentrated in saline to 1/10 of the original volume. Cells for photomicrography were first washed and concentrated and then fixed in 0.5% glutaraldehyde for 15 min. Volumes (5 μl) were transferred to slides previously coated with poly-L-lysine, and phase contrast micrographs were taken with Kodak TMY-400 film.

Cloning in lambda gt-wes. Large-scale preparation of lambda DNA and preparation of lambda arms were carried out as described by Sambrook et al. (35). Insert DNA was prepared by digesting B. subtilis 168 chromosomal DNA to completion with EcoRI and then size fractionating it on a 10 to 40% sucrose gradient. Aliquots of individual fractions were electrophoresed on a 0.8% agarose gel, transferred to nitrocellulose filters, and probed with the insert from pAV2174. Hybridizing fractions were pooled and used as insert in ligation and packaging reactions as specified by the manufacturer of the commercial Packagene kit (Promega).

Cloning of the divIVB region. Genetic mapping studies (33) placed divIVB between spoOB and rodB. In previous studies, we had constructed two strains containing plasmids integrated into the chromosome of B. subtilis 168, pAV31ΔPst in the spoOB region and pAV2174 in the spoOB region (38). To further localize divIVB relative to these strains, we performed physical mapping experiments with the inserts of the integrated plasmids as hybridization probes. Since the integration of the plasmids introduced an additional BamHI site, we were able to determine that the two probes hybridized to the same 15-kb BamHI fragment (data not shown). Moreover, aligning the deduced fragment sizes with each other and with previously published physical mapping data from the pheA region (17) indicated that the insertion sites were 6 to 8 kb apart. To determine which end of this region contained divIVB, we used chromosomal DNA from the insertion strains to determine the cotransformation frequency of the Cm' marker and the divIVB wild-type allele of the insertion strains by transformation of KUS1101 (divIVB1). The results indicated that divIVB was approximately equidistant from the two insertions and would therefore be located on the 6-kb EcoRI fragment to which pAV2174 hybridized.

To clone this fragment, we constructed a collection of recombinant lambda phages containing EcoRI-digested B. subtilis 168 chromosomal DNA as described above. A recombinant phage (gAV16.2) carrying the expected 6-kb EcoRI insert was identified by plaque hybridization (4) with the insert from pAV2174 as end-labeled probe. A 3.9-kb BglII fragment of this phage hybridizing to the insert of pAV2174 was subcloned into the BamHI site of the pSC101-based low-copy-number plasmid pCL1921 (26) to yield pAV2145. In order to provide a marker selectable in Bacillus spp., the chloramphenicol acetyltransferase (CAT) cassette from pER919a (34) was subcloned into the vector portion of pAV2145 at the EcoRI site to create pAV2148. Plasmid pAV2148 was integrated into the chromosome of KUS1101 (divIVB1) by transformation and then selected on chloramphenicol. Transformants were screened microscopically as described above and found to have complemented the divIVB phenotype (see Fig. 8A, B, and C), though small numbers of minicells were observed. The reason a slight minicell type results from integration of pAV2148 is discussed below.

Other plasmid constructions. Plasmids pAV2176 and pAV2177 were constructed by subcloning the insert from pAV2145 into the shuttle plasmid pMK4 (37) and the B. subtilis low-copy-number plasmid pHP13 (20), respectively, using the flanking EcoRI and SalI sites in the multiple cloning site of pAV2145. Plasmids pAV2217, pAV2218, and pAV2219 were constructed by subcloning the leftward, central, and rightward HindIII-PstI fragments, respectively, from pAV2176 (Fig. 1A) into pUC18 and then inserting the CAT cassette.

The inserts of integrational plasmids used in this study are shown in Fig. 1A and C, with the vertical marks aligning with the restriction endonuclease sites (Fig. 1B) used for subcloning. After digestion with appropriate restriction endonucleases, inserts were isolated by gel purification with Gene-
Clean II (Bio 101) and then ligated to pUC18 cleaved with the same restriction endonucleases used to generate the insert (sticky ends) or with HindIII (blunt ends). Selection for Campbell-type insertion was provided by subcloning the CAT cassette into the EcoRI site of the pUC18 linker.

Sequencing strategy. The strategy used to sequence the divIVB region is shown in Fig. 1B. All sequencing was done by the dideoxy termination method of Sanger et al. (36) with Sequenase (United States Biochemical) and according to the protocols supplied by the manufacturer. Three sources of template were used. Most of the region between the BglII sites was sequenced by subcloning of restriction fragments from pAV2176 into the phage vectors M13mp18 and M13mp19 followed by single-stranded sequencing of duplicate clones. Where possible, the replicative forms of the larger phages were used to create subclones by deleting restriction fragments from the ends of the inserts. Junctions of nonoverlapping M13 clones were sequenced by subcloning of restriction fragments from pAV2176 into the plasmid pUC18 followed by double-stranded sequencing. The region between nucleotides 1920 and 2910 (Fig. 2) was sequenced with the aid of primers obtained from Genosys Inc. or the University of South Carolina Oligonucleotide Synthesis Facility. All oligonucleotides used in this study are named according to their 5'-3' nucleotide positions in Fig. 2. Those bearing the designation C following their coordinates are complementary to the sequence in Fig. 2; otherwise, they are identical.

The region downstream of the BglII site in minD was sequenced by using single-stranded templates generated by the polymerase chain reaction (PCR). To prime the lower strand (Fig. 1B), we designed an oligonucleotide (pr4197-4212) based on sequence generated as described above. To prime the upper strand, we designed an oligonucleotide (pr4363-4377C) from sequence previously published by Cutting et al. (8). Symmetric PCR was carried out with these
FIG. 2. Nucleotide sequence of the nontranscribed strand of the \textit{divIVB} region. The translated polypeptide is shown below the nucleotide sequence, with the one-letter designation of each amino acid residue positioned below the first nucleotide of the codon. Putative ribosome-binding sites are underlined and indicated (below the translated product) (\textit{rbs}). Start codons are preceded by the name of the ORF, and stop codons are indicated by asterisks. A putative rho-independent terminator distal to \textit{minD} is indicated by double underlining of the nucleotide sequence of the inverted repeat. A potential nucleotide-binding fold in \textit{minD} is identified by double underlining of the amino acid sequence. Nucleotides are numbered from the start of the \textit{EcoRI} site.
primers and template DNA prepared from phage gtAV16.2. The product was then amplified for single-stranded sequencing by asymmetric PCR (22). The products from three separate symmetric-PCR amplifications were sequenced in this way.

The putative polypeptide products of all ORFs were compared to the EMBL, SWISS-PROT, GenPept, and GenBank data bases by using the FASTA comparison routine of Pearson and Lipman (32).

Complementation analyses of the rodB1 and divIVB1 mutant alleles. To localize the rodB1 mutation, the complementation analysis shown in Fig. 1C was performed by making use of the observation that rodB1 exhibits a temperature sensitivity phenotype (6). Plasmid DNA (Fig. 1C, left) or PCR product (Fig. 1C, right) was transformed into competent ROD104 (rodB1) cells, plated on tryptic soy agar, and incubated overnight at 55°C. Complementation was determined by growth at the nonpermissive temperature and was verified by phase-contrast microscopy.

Attempts to map the divIVB1 mutation with integrational plasmids overlapping the 5' end of the min locus failed (see Results). To avoid possible polar effects on the min genes by Campbell insertion of plasmids, complementation by conjugation was performed. KUS1101 competent cells were transformed with 100 ng of pMK4 and 1 μg of PCR product per ml. After selection for plasmid-encoded Cm", transformants were screened for wild-type colonies (smaller, whiter) and verified by phase-contrast microscopy. Under these conditions, a PCR product spanning all of minC and minD complemented at 0.5%.
Strategy for sequencing the rodB1 and divIB1 mutant alleles. To sequence the rodB1 mutant allele, chromosomal DNA from strain ROD104 was used for symmetric PCR amplification of the region between primers pr1906-1920 and pr2893-2910C, and template for sequencing was generated by asymmetric PCR. The entire rodB1 mutant allele was then sequenced by using this template and primers pr1906-1920, pr2227-2241, pr2481-2496, pr2803-2818 (bottom strand), pr2893-2910C, and pr2595-2610C (top strand). To eliminate the possibility that the Tag polymerase had introduced the observed base changes, three different symmetric-PCR reactions were used to generate sequencing templates.

To sequence the divIB1 mutant allele, the entire min gene clusters of both KUS1101 and CU403 were amplified by symmetric PCR with primers pr2481-2496 and pr4362-4377C. Products from three symmetric amplifications (per strain) were then used as template for asymmetric-PCR amplification with primer pr4362-4377C. All three asymmetric-PCR products were sequenced by using primers pr2803-2818, pr2893-2910, pr2393-3307, pr3687-3701, and pr4197-4212. To sequence the opposite strands, the regions containing the observed mutations were cloned from the symmetric-PCR products in duplicate into pUC18 and subjected to double-stranded sequencing as described previously.

Nucleotide sequence accession number. The nucleotide sequence shown in Fig. 2 has been deposited with GenBank under accession number M95582.

RESULTS

Organization of the divIB-rodB region. We sequenced a region of the B. subtilis 168 chromosome spanning 4.4 kb from an EcoRI site to 90 bp downstream of the rightward BglII site in pAV2145 (Fig. 1B). The region contains five ORFs oriented clockwise with the direction of replication and arranged in two functionally distinguishable gene clusters (mre and min). Upstream of the first gene cluster, our sequence overlaps the 3' end of a previously sequenced transcription unit containing two ORFs (6). Following this transcription unit is a noncoding region of 93 bp which sequence analysis and preliminary promoter probe studies (38) suggest contains promoter activity, but the precise location and extent of this promoter activity have not been determined. The first gene cluster (mre) begins just upstream of the leftmost Ndel site and contains three ORFs (mreCD) spanning approximately 2.44 kb (nucleotides 320 to 2757, Fig. 2). The second gene cluster (min) is positioned immediately downstream of the mre genes with no obvious transcriptional terminators between them. However, a potential promoter precedes the min gene cluster with its -35 region overlapped by the last four codons of mreD. This potential promoter is homologous in sequence and spacing (TTGAgA, nucleotides 2743 to 2748; TATcTcT, nucleotides 2767 to 2772; Fig. 2) to the class of promoters recognized by σ7-bearing RNA polymerase (29). The min gene cluster comprises two ORFs (minCD) spanning 1.49 kb (nucleotides 2810 to 4298; Fig. 2). Beginning 33 bp downstream of the translational stop codon of minD is a region of dyad symmetry (CTGACAAAGC, nucleotides 4323 to 4332; GCTgT gT CACG, nucleotides 4337 to 4346; Fig. 2) capable of forming the stem-loop structure characteristic of rho-independent transcriptional terminators. This sequence, as previously reported by Cutting et al. (8), lies approximately 100 bp upstream of the start codon of spoIVF4.

Nucleotide sequence analysis of the mre gene cluster. The first ORF of the first gene cluster (mreB) begins with an ATG codon at position 326 and encodes a protein of 337 amino acids with a molecular weight (MW) of 35,921 (Fig. 2). Immediately upstream is a sequence (AGAAGGAC, nucleotides 306 to 315) with strong complementarity to the 3' end of B. subtilis 165 rRNA and properly positioned to serve as a ribosome-binding site (29). The putative product of the B. subtilis mreB gene is highly similar to the mreB gene products from E. coli (15) and Bacillus cereus (31). The amino acid sequences of all three genes are aligned in Fig. 3. The B. subtilis MreB polypeptide shows 52.8% identity to MreB of B. cereus and 56.8% identity to MreB of E. coli, with conservative substitutions increasing the similarities to 67.4 and 67%, respectively. The MreB polypeptides of B. cereus and E. coli are 53% identical. Inspection of Fig. 3 also shows that conserved sequences occur in contiguous blocks, with nonconservative changes occurring relatively rarely within them. Where any two products match at a given position, the third is either identical or contains a conservative substitution 85% of the time. Two unconserved regions (residues 76 to 125 and 218 to 266) in which matches among all three polypeptides are relatively rare are apparent. This uniformity of structure is further evident in hydropathy plots (data not shown), which show two conserved domains (residues 1 to 45 and 140 to 200) of similar extents and hydrophobicities between the two homologs.

The second ORF (mreC) of the mre gene cluster begins 11 codons downstream of mreB (ATG, nucleotide 137) and extends 867 bp, overlapping the putative ribosome-binding site of the third ORF (mreD). The predicted product of mreC is a polypeptide of 290 amino acid residues with an MW of 32,145. This ORF is preceded by a potential ribosome-binding site (AAGAGGTTG) centered 11 bp upstream of the putative start codon (nucleotides 1355 to 1362). The B. subtilis MreC polypeptide displays similar identity to the
The amino acid sequences of the mreC gene product of E. coli is from Wachi et al. (39).

MreC polypeptide of E. coli (39), with an identity of 23.2% in a 272-amino-acid overlap (Fig. 4). However, a high number of conservative changes increases the similarity to 68%. Hydropathy analysis of the two predicted products reveals

that both polypeptides contain a restricted region of strong hydrophobicity near the N terminus (residues 10 to 30) flanked by short regions of hydrophilicity (data not shown). In size, the predicted products of these genes are divergent, with the putative E. coli MreC polypeptide being 78 amino acid residues larger (367 amino acids; MW 39,530) (39).

The third ORF (mreD) begins at a GTG codon (nucleotide 2239) immediately adjacent to the stop codon of mreC. mreD spans 513 nucleotides and would encode a polypeptide of 172 amino acid residues with an MW of 19,819. Located entirely within the preceding ORF (mreC) is the putative ribosome-binding site (AGAGGAGG, nucleotides 2224 to 2231). The position of mreD within the mre gene cluster suggested that it would be homologous to the E. coli mreD gene. Although the two polypeptides are of comparable lengths, the amino acid sequences are quite different (39), with an overall identity of only 21%. Nonetheless, examination of the hydropathy plots reveals a striking similarity of profile (Fig. 5).

The putative products of both genes show five regions of sufficient length and hydrophobicity to be membrane spanning, and the N and C termini of both polypeptides consist of short, strongly hydrophilic stretches of 10 residues each. The overall conservation of the mre gene cluster suggests that the similarity in the hydrophobicity profiles of the B. subtilis MreD polypeptide is from Wachi et al. (39).

FIG. 4. Amino acid similarities between the MreC homologs of E. coli (E. c.) and B. subtilis (B. s.). Two dots (:) indicate that the residues are identical in opposing proteins; single dots (:) indicate conservative differences. The amino acid sequence of the mreC gene product of E. coli is from Wachi et al. (39).

FIG. 5. Comparison of hydropathy profiles of putative products of the mreD genes of E. coli (top) and B. subtilis (bottom). The strong similarity of the hydrophobicity profiles of the two homologs is clear. Both putative polypeptides contain five regions of sufficient length and hydrophobicities to be membrane spanning. Also evident in both polypeptides are strongly hydrophilic N- and C-terminal domains of 10 residues each. The hydropathy plot of the E. coli homolog was generated by translation of nucleotide sequence from Wachi et al. (39). Hydropathy analysis was performed as described by Kyte and Doolittle (24).
subtilis and E. coli MreD polypeptides reflects a conservation of structure and function obscured by the divergence in amino acid sequence.

Nucleotide sequence analysis of the min gene cluster. The first ORF (minC) of the second gene cluster begins with a GTG codon adjacent to the SspI site at nucleotide 2801 and consists of 226 codons whose predicted product has an MW of 25,001. A potential ribosome-binding site (GAGGT) is centered 10 bp upstream of the start codon. Genetic evidence (see below) and position within the gene cluster suggested that this ORF would be homologous to minC of E. coli. The predicted products of these loci, though similar in length (226 and 231 residues), are divergent in amino acid sequence (13). Overall identity is 17.7%, with conservative substitutions raising total similarity to only 26.1%. A region of significantly greater similarity was identified between amino acid residues 108 and 176, where the two polypeptides are 31.4% identical and 71.1% conserved over a window of 70 residues (Fig. 6).

The second ORF of the min gene cluster (minD) spans 268 codons and would encode a polypeptide of MW 29,411. The stop codon of minC lies between the start codon (TTG, nucleotide 3492) and the putative ribosome-binding site (AGGGAG, nucleotides 3477 to 3483) of minD, raising the possibility that the two genes are translationally coupled (19). This arrangement is also found in the minB operon of E. coli, except that in the minB operon, the stop codon of minD lies between the ribosome-binding site and the start codon of minE (13). It may be significant in this regard that the B. subtilis min locus lacks a minE homolog (see below).

The putative products of the B. subtilis and E. coli minD (13) genes are virtually identical in length (268 and 270 residues, respectively) and very similar. A comparison of the amino acid sequences (Fig. 7) shows that the two polypeptides are identical at 115 of 268 positions (43.7% identity) and contain conservative substitutions at an additional 107 positions (83.3% total similarity). Furthermore, the identical positions are most heavily distributed in the N-terminal two-thirds (residues 1 to 160), with the majority of the nonconserved residues (60%) in the C-terminal one-third (residues 160 to 269). Also located within the conserved region, very close to the N terminus, is a cluster of 11 amino acids identical in sequence and position in both polypeptides (13) and containing a nucleotide-binding consensus sequence (18). Recently, deBoer et al. have shown that minD of E. coli has ATPase activity (11).

If the B. subtilis min locus were strictly homologous to minB of E. coli, the region immediately downstream of minD should contain an ORF corresponding to minE. However, three observations indicate that no minE homolog is present in this interval: (i) the region could encode only a polypeptide of one-third the size of MinE (30 residues versus 88) (13), (ii) all reading frames are closed, and (iii) none of the reading frames encodes a polypeptide with significant similarity to MinE. If B. subtilis contains a minE homolog, it is located elsewhere on the chromosome.

rodB1 is allelic to mreD. Genetic mapping (33) established that rodB1 is cotransformable with several genes in the divIB region, with the order being spoIVB-divIB-rodB-spoIIB. Wachi et al. (40) had shown that mutation within the E. coli mre operon results in a shift in E. coli cells from rod shaped to spherical, formally resembling the change exhibited by the rodB1 mutant. It seemed probable, then, that rodB1 would be allelic to one of the B. subtilis mre genes, and preliminary genetic mapping by R. Losick and coworkers confirmed this expectation (27).

To extend this observation, a series of overlapping clones (Fig. 1C) was constructed and tested for the ability to complement rodB1. Since plasmids were found to integrate into the B. subtilis chromosome at a low frequency in this region, competent ROD104 cells were transformed with these clones and complementation was tested by growth at the nonpermissive temperature (see Materials and Methods). This method of complementation allowed replacement of the mutant with the wild-type allele by a double-crossover event, avoiding the necessity for a Campbell-type insertion.

Confirming that rodB1 was allelic to one of the mre genes, a plasmid carrying the entire mre-divIB region (pAV2176) complemented the rodB1 mutation, while PCR products containing only the min locus did not (Fig. 1C). Plasmids containing only mreB and mreC (pAV2175, pAV2194, pAV2198, pAV2199, and pAV2192) failed to show rodB1-complementing activity. Plasmid pAV2186, which contains all of mreD and the 5' end of minC, and plasmid pAV2186ΔSspI, which terminates at the SspI site in mreD (nucleotide 2679, Fig. 2), both complemented the rodB1 mutation. Plasmid pAV2186ΔSspIIΔArA, which lacks the 5' end of mreD, failed to complement. Thus, rodB1 is allelic to mreD, with the mutation situated in the DraI site. To further localize the rodB1 mutation, we performed similar experiments with PCR products overlapping rodB2 to various extents from the 3' end (Fig. 1C). The results of the complementation studies with plasmid DNA as donor showed that the mutation lies between the HincII site 5' to...
mreD (start point of plasmids pAV2186 and pAV2186ΔSsp) and the DraI site in mreD (start point of pAV2186ΔSsp ΔDra). The PCR experiments further localized complementing activity to the start point of pcrdivI1B3771/5365 (nucleotide 2481, Fig. 2).

To determine the nature of the rodBI1 mutation, the mutant allele was subject to nucleotide sequence analysis. Chromosomal DNA from strain ROD104 was used as template for amplification of the mutant allele by the PCR, and PCR products from these such amplifications were sequenced directly. The product of an additional PCR amplification was used to clone both strands in M13mp18 and M13mp19 and again subjected to nucleotide sequence analysis. In all cases, a G-to-A transition was observed at nucleotide position 2287, resulting in a substitution of a negatively charged lysine residue for a negatively charged glutamic acid residue within the N-terminal hydrophobic domain.

Disruption of mre genes results in apparent loss of viability.

Because of the association of rodB and the E. coli mre genes with determination of cell shape, it was of interest to examine the effect of insertional inactivation of the B. subtilis mre genes on cell morphology. Chromosomal DNA fragments wholly internal to each of the mre genes were subcloned into pUC18, and a CAT cassette was inserted into the vector in order to provide selection for Campbell-type insertions (Fig. 1A). Transformation of B. subtilis 168 with these plasmids to chloramphenicol resistance occurred at a low frequency (20 to 200 transformants per μg of DNA), and all failed to grow upon subculturing to the same medium used for selection (tryptic soy agar with 5 μg of chloramphenicol per ml). Apparently, insertional inactivation of the mre genes leads to loss of viability under these conditions. However, integration of plasmids whose inserts are not contained wholly within an mre gene (e.g., pAV2217, pAV2218, and pAV2193), although a low-frequency event, does not lead to loss of viability, since transformants can be subcultured. Examination of these cells with the phase-contrast microscope reveals moderate morphological changes (curved, irregular walls) and a minicell phenotype (38).

Interruption of minC or minD causes minicell formation. If the min gene cluster is functionally analogous to the minB operon of E. coli, insertional inactivation of either minC or minD should result in the minicell phenotype (13). To test this hypothesis, plasmids containing chromosomal fragments wholly internal to minC or minD were integrated into the chromosome of B. subtilis 168, resulting in insertional inactivation of the ORF. Clones resulting from transformation with plasmids pAV2211 or pAV2212, which contain inserts internal to minD, were found to exhibit a minicell phenotype more severe than that of the divIVB1 mutant allele (Fig. 8E). When plasmid pAV2210 (minC) was transformed into B. subtilis 168, minicells, short rods, and filaments were also observed (Fig. 8D). Although the similarity between MinC of B. subtilis and MinC of E. coli is restricted, the production of minicells resulting from insertional inactivation supports the view that these genes are functional homologs. However, the possibility remains that minicell formation resulted from a polar effect of the insertion in minC on transcription of minD.

divIVB1 is allelic to minD. To determine whether divIVB1 was allelic to one of the genes of the min locus, complementation analysis was carried out on strain KUS1101 (divIVB1). However, when plasmids containing inserts overlapping the 5’ end of minC were integrated into the chromosome of KUS1101, all of the resulting merodiploids exhibited the minicell phenotype. To avoid potential polar effects of integrated plasmids, complementation by conger was performed (see Materials and Methods). As seen in Fig. 1C, complementation was observed with PCR products spanning the region between the PsiI site in minC and the NdeI site downstream of minD. Therefore, divIVB1 is allelic to minC or minD, with the mutation occurring between the PsiI site in minC and the BglII site at the 3’ terminus of minD.

To identify the divIVB1 mutation, the entire min loci of both KUS1101 and CU403 were sequenced by using template generated by the PCR. Both divIVB1 strains contain two mutations in minD. The first mutation is a T-to-A transversion (nucleotide 3751) resulting in the substitution of a lysine for a methionine at amino acid residue 87; the second is a T-to-C transition (nucleotide 3931) resulting in an isoleucine-to-threonine change at amino acid residue 147. Both of the observed mutations in minD are within domains highly conserved between the B. subtilis and E. coli homologs. Although neither mutation occurs at a position of identity between the two species, both occur at positions of conservative substitutions (Fig. 7).

mre-min gene clusters may constitute a single operon. The failure of attempts to map the divIVB1 mutation by Campbell insertion of plasmids whose inserts overlap the 5’ end of minC contrasted with results obtained with pAV2148. This plasmid, whose insert continues to the 3’ terminus of minD, complemented the divIVB1 phenotype. The low numbers of minicells resulting after integration of pAV2148 were readily explained by sequence analysis, which revealed that subcloning of the BglII fragment had destroyed the stop codon of minD. Consequently, translation of the plasmid-encoded mRNA would continue into the vector sequence, ostensibly generating a fusion protein with impaired function.

These considerations suggested that the min gene cluster may be part of a larger transcription unit. To test this possibility and to determine the extent of the operon, we constructed integrative plasmids spanning various mre and/or min genes and containing a CAT cassette on the vector. When plasmids overlapping the 5’ end of the min gene cluster were integrated into the chromosome of B. subtilis 168 (e.g., pAV2218 and pAV2219; Fig. 1A), all resulting transformed colonies were found to contain large numbers of minicells, short rods, and filaments (Fig. 8F). Because the resulting merodiploids contained complete copies of all the genes of the divIVB region, the minicell phenotype must have resulted from a polar effect on transcription of minC and/or minD.

In contrast to plasmids overlapping the min genes, those overlapping only mre genes (e.g., pAV2217, pAV2218, and pAV2193) transformed with low efficiency, probably because interruption of the min gene cluster is not well tolerated. However, all transformants which arose did exhibit a pronounced minicell phenotype. In contrast, integration of pAV2174 yielded transformants which were essentially wild type, though they did produce small numbers of minicells. We conclude that the mre-min genes are part of a single transcription unit initiating somewhere between the start codon of mreB and the EcoRI site immediately upstream.

Presence of the divIVB region on plasmids causes minicell formation in E. coli and B. subtilis. The high level of similarity exhibited between the E. coli and B. subtilis min homologs suggested the possibility that the B. subtilis genes would retain some function in E. coli. Phase-contrast microscopy on E. coli strains transformed with either pAV2145 or pAV2148 revealed that transformants exhibited a minicell
phenotype (Fig. 8H). However, minicell formation was not observed with all plasmids containing DNA from the min locus. Plasmids pAV2176 and pAV2177 do not induce minicell formation in E. coli. Significantly, these plasmids contain the BgiII fragment from pAV2145 in the opposite orientation (antisense) with respect to the lac promoter on the vector.

The effect of plasmids pAV2176 and pAV2177 on B. subtilis 168 was also examined by phase-contrast microscopy. The vector portion of pAV2176 is pMK4, which replicates at a high copy number in B. subtilis. The vector portion of pAV2177 is pHP13, which replicates at a low copy number (five or six copies per cell). When transformed into B. subtilis 168, the two plasmids induced minicell formation at comparable levels. Moreover, both produced two distinct colony types, one resembling the divIVB1 colony type (large, translucent, and bluish) and another resembling wild-type colonies (smaller, more opaque, and white). Colonies of the first type exhibited a phenotype indistinguishable from that of divIVB1 mutants, whereas colonies of the second type produced fewer minicells, and a larger proportion of them were short rods and ovoids (Fig. 8G).

DISCUSSION

The divIVB locus contains five genes which appear to constitute two gene clusters based on the function of their E. coli homologs. Sequence analysis and preliminary promoter probe studies suggested that promoters precede each gene cluster, with the primary promoter located upstream of mreB and a secondary promoter located between mreD and minC. The 3' end of the operon is well defined by the beginning of the spoIVF operon and by the presence of a putative rho-independent transcriptional terminator between the stop codon of minD and the promoter of spoIVF. The 5' end is less well defined. In E. coli, the min and mre genes are part of different operons, being separated by nearly half of the E. coli chromosome (26 and 71 min, respectively). However, all five ORFs of the mre-min region of B. subtilis may be part of a single transcription unit. This conclusion is suggested by the observation that Campbell insertion of plasmids overlapping the 5' end of the min gene cluster results in minicell formation (e.g., pAV2218), ostensibly by interrupting transcription of the downstream min genes. Although Campbell insertions in the min region itself are low-frequency events, they, too, result in formation of minicells (e.g., pAV2217 and pAV2193).

Two observations indicate that the ORF upstream of mreB is not part of the mre-min transcription unit. First, our results show that Campbell insertions of plasmids into the mre region are not well tolerated, suggesting that disruption of the mre region results in loss of viability. However, insertions upstream of mreB were readily obtained as long as they did not insertionally inactivate the upstream genes. Second, the strains generated by Campbell insertion upstream of mreB did not show minicell formation at a level corresponding to the divIVB1 phenotype.

The mre and min genes, then, may be part of a single operon initiating at a promoter immediately upstream of mreB but with an internal secondary promoter upstream of the min genes. This arrangement would transcriptionally couple mre and min gene expression during growth but allow expression of the min genes to be regulated independently during division. The reason the mre and min genes should be transcriptionally coupled in B. subtilis but not in E. coli may be related to differences in the architecture of gram-positive and gram-negative cell envelopes. The more-prominent peptidoglycan layer in the cell envelopes of gram-positive organisms may necessitate tighter coordination between cell wall synthesis and septum formation.
The most striking observation revealed by sequence analysis of the min gene cluster is the absence of a minE homolog. A possible explanation is that either minC or minD performs the function of minE. Consistent with this view, the presence of the divIVB region on plasmids induces minicell formation in B. subtilis and E. coli. However, we consider this hypothesis unlikely. Since plasmids bearing the divIVB region can induce minicell formation in either E. coli or B. subtilis, MinD would be the likely candidate for carrying MinE function because of its high degree of conservation. However, the two MinD products are nearly identical in size, with only small nonhomologous regions, making it difficult to envision where the MinE function could reside. Moreover, neither MinC nor MinD exhibits any sequence similarity to MinE. A more likely explanation for the absence of a minE homolog in the divIVB region is that an added level of control is required by B. subtilis because of the necessity of asymmetric septum formation during sporulation. The absence in B. subtilis may be part of a separate regulatory operon located elsewhere on the chromosome so that it can be regulated separately from minCD during sporulation.

Another interesting feature of the min sequence is the divergence in the degree of conservation between the MinC and MinD homologs of B. subtilis and E. coli. MinD is highly conserved over most of its length, whereas MinC shows little conservation except over a very narrow region. These differences may be related to the functions of the two proteins. In E. coli, MinD has been shown to serve an accessory role (14). Conservation may be dictated by the requirement that MinD also interact with other regulatory components of the division apparatus. Both MinD polypeptides contain putative nucleotide-binding folds of 10 amino acid residues identical in sequence and position (13, 15), suggesting that MinD may be the target of division regulators. Moreover, MinD has recently been shown to have ATPase activity (11). Finally, both point mutations identified by us in the original divIVB1 strain (CU403) resulted in amino acid substitutions in highly conserved regions of MinD. In contrast, MinC has been shown to be the actual division inhibitor in E. coli (14, 25) and may be expected to interact directly with components of the cell envelope. Differences in the structures of the cell envelopes of gram-positive and gram-negative organisms may dictate the observed divergence of amino acid sequence between the MinC homologs of the two organisms. One expectation of this hypothesis is that the region of MinC which interacts with MinD should be more conserved than the rest of the molecule. Mulder et al. (30) recently identified a series of mutations within minC which suppress division inhibition induced by overexpression of minD. Significantly, these mutations cluster within the conserved region of MinC.

The observation that the presence of the divIVB region on plasmids can induce minicell formation in E. coli is intriguing. The high level of homology between the MinD homologs of the two organisms suggests that the minicell phenotype in this case may result from competition between the B. subtilis and E. coli MinD homologs for MinC. The resulting formation of a nonfunctional hybrid may result in a corresponding drop in the level of functional MinCD. However, minicell formation in E. coli was not observed with all plasmids bearing the divIVB region. The low-copy-number plasmids pAV2145 and pAV2148 both induced minicell formation, whereas the high-copy-number plasmids pAV2176 and pAV2177 did not. It may be significant that in the low-copy-number plasmids, the insert is in the sense orientation with respect to the lac promoter (on the vector), whereas in the high-copy-number plasmids, it is in the antisense orientation. Since the insert lacks the putative primary promoter upstream of mreB, expression would depend either on the lac promoter (low-copy-number plasmids only) or on the internal promoter upstream of minC. The internal promoter may not be active enough in E. coli for the high-copy-number plasmid to produce MinD in sufficient levels to induce minicell formation.

The observation that the presence of the divIVB region on plasmids induces minicell formation in B. subtilis was unexpected. In the E. coli system, overexpression of minCD induces filamentation. If the internal promoter upstream of minC is functional, one would expect the high-copy-number plasmid to overexpress MinCD and induce filamentation as well. One explanation is that the E. coli and B. subtilis min systems function differently. For example, in B. subtilis, formation of an active MinCD may require interaction with an as-yet-unidentified component. If MinCD is present at too high a level, all potential division sites would be occupied by inactive inhibitor, and division would occur randomly at any site. However, the high degree of structural and functional conservation observed among the cell division genes so far identified in the two organisms argues against this view. An alternative explanation is that the MinCD proteins generated from plasmid-derived transcripts are defective. Since the construction of both plasmids resulted in the destruction of the stop codon at the end of minD, the resulting fusion protein may no longer be able to inhibit cell division but may still be capable of competing with chromosomally encoded MinCD for binding to division sites. Again, this would result in a nonfunctional MinCD occupying all potential septation sites, and division would occur at all sites with equal frequency. A third, less likely explanation is that the lac promoter on the vector may override expression from the internal promoter, resulting in antisense mRNA which would inhibit translation of the wild-type message.

Sequence analysis of the mre gene cluster reveals little concrete information on the function of these genes. In E. coli, the genes of the mre operon (mreBCD) are known to be involved in determination of cell shape, since mutation or deletion of the mre genes leads to formation of spherical cells. In the case of mutation in mreB, this spherical transformation is accompanied by increased expression of ftsI and accumulation of its product, pbp3 (septum peptidoglycan synthetase) (40, 41). It has also been proposed that mreB is involved in the switch from growth to division because overexpression of mreB in wild-type cells leads to cessation of septation. Significantly, we have shown that in B. subtilis, the min cell division genes appear to be transcriptionally coupled to the mre genes.

The high degree of sequence similarity between the B. subtilis and E. coli mre gene products and the similarities of their hydropathy plots suggest that they may have identical functions in the two organisms. Consistent with this view, we show that the rodB1 mutant allele of B. subtilis, which exhibits a temperature-sensitive transition from rod-shaped to spherical cells (23, 32) strictly analogous to that observed with mutation in the E. coli mre genes, maps to mreD. Wachi et al. (39) suggested that the mre genes may be membrane-associated regulatory components of cell wall synthesis. Significantly, the rodB1 mutation results in the substitution of a positively charged lysine for a negatively charged glutamic acid residue within the N-terminal hydrophobic domain of MreD and may be expected to affect insertion or orientation in the cytoplasmic membrane.
We were unable to demonstrate that inactivation of the mre genes of B. subtilis produced a phenotype analogous to that observed in E. coli, because disruption of these genes resulted in loss of viability. Possibly, the mre genes serve a more essential function in B. subtilis than in E. coli. In the latter, deletion of the mre genes results in a spherical shape without loss of cell viability, while insertionally inactivation of any of the mre genes of B. subtilis is apparently lethal. Again, this may reflect differences in cell envelope architecture, since gram-positive rods appear to depend on an interaction between peptidoglycan and teichoic acids for stability of the cell envelope. Indeed, mutation at the rodC locus, which is involved in teichoic acid synthesis, also results in establishment of a spherical phenotype (21), and insertional inactivation of either of the genes in the rodC operon is lethal (42). Work on introducing less-drastic point mutations and in-frame deletions into these genes in order to clarify their function is currently under way.

ACKNOWLEDGMENTS

We thank Richard Losick for communicating sequencing data prior to publication (27) and for sharing preliminary mapping results localizing rodB1 to the mre gene cluster. We also thank John Reeve for strain CU403, Yun Butler for the precursor to pAV2174 (pYB2175), Yamuna Abbayawardehe for confirming the sequence upstream of the leftmost NadE1 site, and Margaret Hunt for her advice in establishing PCR conditions. This work was supported by Public Health Service grant GM37990 from the National Institutes of Health.

REFERENCES