Physical Map Location of the rpoN Gene of Escherichia coli

HIROMASA IMAISHI,† MANABU GOMADA, SACHIYE INOUE, AND ATSUSHI NAKAZAWA*

Department of Biochemistry, Yamaguchi University School of Medicine, Ube Yamaguchi, Japan 755

The Escherichia coli rpoN gene, encoding an RNA polymerase sigma factor, σ^70, has been genetically mapped to 70 min on the E. coli K-12 chromosome (3), cloned (8), and sequenced (19). In this study, we cloned the rpoN region from phage DNAs 7E3 (522) and 3G10 (523) of the Kohara miniset library (11) and determined its nucleotide sequence. The restriction map made from the nucleotide sequence was laid on Rudd’s physical map (17), the unique BamHI site in this region being matched with the same site on the physical map. The results defined the position for the rpoN gene at around 3364 kb (Fig. 1). There were four open reading frames (ORFs) with the same transcription direction in this region: ECRNORF1 (241 amino acids), ECRNORF2 (= rpoN; 477 amino acids), ECRNORF3 (95 amino acids), and ECRNORF4 (163 amino acids). Similar ORFs were arranged in the same order in chromosomess of Rhizobium meliloti (2), Pseudomonas putida (9), Klebsiella pneumoniae (13, 14), Thiobacillus ferrooxidans (4), and Azotobacter vinelandii (15), suggesting that this region has a common physiological significance in these bacteria.

The putative protein from ECRNORF1, which is on direct matching 59.2% and 57.5% identical to the T. ferrooxidans (4) and R. meliloti (2) counterparts, respectively, resembles a family of membrane-binding transport proteins having two consensus nucleotide-binding motifs, such as E. coli CysA (20) and LivF (1). E. coli RpoN shows sequence identities of 88.7, 51.4, 48.8, 48.5, and 38.7% to those of K. pneumoniae (13), A. vinelandii (14), P. putida (9), T. ferrooxidans (4), and R. meliloti (16), respectively. The putative protein from ECRNORF3 has 87.4, 53.8, 53.8, 33.3% identities to those from K. pneumoniae (13), A. vinelandii (15), P. putida (9), and T. ferrooxidans (4), respectively. The protein has 36.5% matching amino acids in 95 residues, 52.0% in 25 residues, and 35.1% in 37 residues compared with a putative protein from an ORF upstream from the E. coli pheA operon (7), another putative protein from an ORF upstream from the Bacillus subtilis div gene (18), and spinach chloroplast ribosomal protein (22), respectively. The putative protein from ECRNORF4 matches 88.8% compared with that of K. pneumoniae (13). Interestingly, it has 25.2% matching amino acids in 131 residues, 24.1% in 112 residues, and 24.3% in 107 residues compared with E. coli mannilol enzyme II (12), Salmonella typhimurium fructose enzyme III (6), and Staphylococcus carnosus mannilol enzyme III (5) of the bacterial phosphotransferase system. The protein also has 36.1% matching amino acids in 36 residues and 35.1% in 37 residues compared with Caulobacter crescentus FlaY (10) and R. meliloti nodulation protein C (21), respectively.

* Corresponding author.
† Present address: Department of Plant Protection, Faculty of Agriculture, Kobe University, Kobe, Japan 657.

Nucleotide sequence accession number. The nucleotide sequence data obtained here will appear in the DDBJ, EMBL, and GenBank data bases under accession no. D12938.

We thank Bobby Baum for informing us of the homology of putative proteins from ECRNORF3 and ECRNORF4 to other proteins, and we thank Bradford Powell and Yoshikazu Naka- murata for sharing unpublished nucleotide sequence data on the ECRNORF3 and ECRNORF4 regions.

This work was supported by a grant-in-aid from the Ministry of Education, Science and Culture of Japan.

REFERENCES


ERRATUM

Physical Map Location of the rpoN Gene of Escherichia coli
HIROMASA IMAISHI, MANABU GOMADA, SACHIYE INOUYE, AND ATSUSHI NAKAZAWA
Department of Biochemistry, Yamaguchi University School of Medicine, Ube Yamaguchi, Japan 755

Vol. 175, no. 5, p. 1550: Figure 1 should appear as shown below.