Characterization of the Lactococcal Temperate Phage TP901-1 and Its Site-Specific Integration

B. CHRISTIANSEN, M. G. JOHNSEN, E. STENBY, F. K. VOGENSEN, AND K. HAMMER

Center for Lactic Acid Bacteria, Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, and Department of Dairy and Food Science, Section ML, The Royal Veterinary and Agricultural University, DK-1870 Frederiksberg

Received 22 November 1993/Accepted 5 December 1993

The temperate lactococcal phage TP901-1, induced by UV light from Lactococcus lactis subsp. cremoris 901-1, was characterized. The restriction map was found to be circular, and the packaging of TP901-1 DNA was concluded to occur by a headful mechanism. The pac region was localized on the 38.4-kb phage genome. TP901-1 belongs to the class of P335 phages (V. Braun, S. Hertwig, H. Neve, A. Geis, and M. Teuber, J. Gen. Microbiol. 135:2551–2560, 1989). Evidence is presented that the phages TP936-1 (V. Braun, S. Hertwig, H. Neve, A. Geis, and M. Teuber, J. Gen. Microbiol. 135:2551–2560, 1989) and C3-T1 (A. W. Jarvis, V. R. Parker, and M. B. Bianchin, Can. J. Microbiol. 38:398–404, 1992) are very closely related to or are identical to TP901-1. The lytically propagated TP901-1 phages were able to lysogenize both indicator strains Lactococcus cremoris 3107 and Wg2. Lysogenization resulted in site-specific integration of the phage genome into the bacterial chromosome. Only one chromosomal attB site was found in 20 independent lysogens. The attR region of TP901-1 and the attL and attR regions were cloned and sequenced. The results showed a core region of only 5 bp, in which the recombination occurs, followed after a 1-bp mismatch by a 7-bp identical region, TCAAT(T/C)AAAGTAA. This result was further verified by sequencing of the attB region obtained by PCR. An integration vector was constructed with the 6.5-kb EcoRI fragment from TP901-1 containing attP. This vector also functions in the plasmid-free strains MG1363 and LM0230 with only one specific attB site, strongly indicating a more general use of the TP901-1-based integration vector in lactococci.

Molecular studies of bacteriophages from Escherichia coli have revealed important gene regulatory mechanisms acting in the host strain. Also, many important genetic tools, such as phage cloning vectors and gene expression systems, have been developed from bacteriophages. With the aim of developing genetic tools, such as a chromosomal integration system and regulated promoters, but also with the perspective later to be able to use the chosen phage as a tool for discovery of global gene regulatory systems in lactococci, we initiated a molecular study of the lactococcal temperate phage TP901-1. Despite many cases of reported lysogeny among lactococcal bacterial strains, studies of the life cycles and molecular biology of the temperate phages from Lactococcus spp. have been scarce. One reason for this is probably the lack of suitable indicator strains for most of the induced phages. The molecular biology of the temperate phages BK5-T and φLC-3—isolated from Lactococcus lactis subsp. cremoris (L. cremoris) BK5 and IMN-C3, respectively—however, has been studied in some detail (14, 22). Phage C3-T1 from L. cremoris C3 has also been characterized (15). Attachment and packaging sites were located in all three phages. In BK5-T and C3-T1, the phage genomes were shown to be linear, circular, permuted, and terminally redundant double-stranded DNA molecules (13, 14). Phage promoters affected by a phage gene were isolated and sequenced from BK5-T (15). Phage φLC-3 contained cohesive single-stranded DNA ends in a linear double-stranded phage genome (22). The integration system of φLC-3 has been analyzed and sequenced (21).

In this report, we present the restriction map of phage TP901-1, including the location of the attP and pac regions. We have been able to monitor the lysogenic life cycle of the phage and demonstrate the presence of only one major attachment site. An integration vector based on TP901-1 DNA sequences was constructed, and the attP, attL, attR, and attB regions were identified, cloned, and sequenced. The integration system from TP901-1 was also shown to be functional and site specific in the laboratory strains often used for genetic studies of lactococci, namely Lactococcus lactis subsp. lactis MG1363 and LM0230. This strongly indicates that the integration system of TP901-1 may be of general use as a genetic tool with lactococci.

MATERIALS AND METHODS

Bacteria, plasmids, and phages. Bacterial strains and plasmids used in this work are listed in Table 1. Phage DNA from phages C3-T1 (13) and φLC3 (22) was obtained from A. Jarvis and D. Lillegaard, respectively. Lactococcus strains were propagated at 30°C in M17 broth without shaking (28) (Oxoid Limited, Basingstoke, Hampshire, United Kingdom). Phage titers were determined as described by Terzaghi and Sandine (28). E. coli strains were grown with agitation at 37°C in Luria-Bertani broth (25) (Difco Laboratories, Detroit, Mich.). Bacto agar (Difco Laboratories) was used at 1.5% (wt/vol) in solid media and 0.7% (wt/vol) in top agar.

Temperate phages were induced from their hosts by UV irradiation. M17 broth was inoculated with 1% (vol/vol) of an overnight culture of the lysogenic strain. The culture was at an optical density at 600 nm of 0.15, harvested at 5,000 × g for 10 min, and resuspended in 0.5 volume of NC (0.5% NaCl [wt/vol], 5 mM CaCl2). The suspension was pumped through a quartz flow cuvette placed at the bottom of a UV field (254
TABLE 1. Bacteria and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. lactis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wg2</td>
<td>Indicatr strain for TP901-1 and TP936-1</td>
<td>2</td>
</tr>
<tr>
<td>3107</td>
<td>Indicatr strain for TP901-1 and TP936-1</td>
<td>2</td>
</tr>
<tr>
<td>901-1</td>
<td>Lysogenic for TP901-1</td>
<td>2</td>
</tr>
<tr>
<td>936-1</td>
<td>Lysogenic for TP936-1</td>
<td>2</td>
</tr>
<tr>
<td>ES46</td>
<td>3107:TP901-1</td>
<td>This study</td>
</tr>
<tr>
<td>BK5</td>
<td>Lysogenic for BK5-T</td>
<td>14</td>
</tr>
<tr>
<td>LM0230</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>MG1363</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>BC1014</td>
<td>3107:pBC143</td>
<td>This study</td>
</tr>
<tr>
<td>BC1017</td>
<td>MG1363:pBC143</td>
<td>This study</td>
</tr>
<tr>
<td>BC1022</td>
<td>LM0230:pBC143</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli XLI-Blue</td>
<td>recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacFZΔM15 Tn10 (Tet)]</td>
<td>Stratagene, La Jolla, Calif.</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Name</th>
<th>Relevant characteristics</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBluescriptISK(+)</td>
<td>lacZ bla</td>
<td>Stratagene, La Jolla, Calif.</td>
</tr>
<tr>
<td>pGEM-5zf(−)</td>
<td>lacZ bla</td>
<td>Promega, Madison, Wis.</td>
</tr>
<tr>
<td>pGEM-7zf(+)</td>
<td>lacZ bla</td>
<td>Promega, Madison, Wis.</td>
</tr>
<tr>
<td>pIL253</td>
<td>erm</td>
<td></td>
</tr>
<tr>
<td>pUC7,erm<sup>a</sup></td>
<td>pUC7::1.1-kb HinPI pIL253 erm</td>
<td>W. M. de Vos, NIZO, Ede, The Netherlands</td>
</tr>
<tr>
<td>pBC104</td>
<td>pGEM-7Zf(+)::2.3-kb CiaI TP901-1 bla</td>
<td>This study</td>
</tr>
<tr>
<td>pBC144</td>
<td>pGEM-7Zf(+)::1.1-kb erm bla</td>
<td>This study</td>
</tr>
<tr>
<td>pBC143</td>
<td>pGEM-7Zf(+)::6.5-kb EcoRI TP901-1::1.1-kb erm bla</td>
<td>This study</td>
</tr>
<tr>
<td>pBOPI</td>
<td>BC1014 PstI-rescue erm bla attL (10 kb)</td>
<td>This study</td>
</tr>
<tr>
<td>pPOB1</td>
<td>BC1014 SacI-rescue bla attR (14 kb)</td>
<td>This study</td>
</tr>
<tr>
<td>pPOB2</td>
<td>BC1014 BamHI-rescue bla attR (12.5 kb)</td>
<td>This study</td>
</tr>
<tr>
<td>pBOP6</td>
<td>pGEM-7Zf(+)::3.6-kb CiaI 901-1 bla attR</td>
<td>This study</td>
</tr>
<tr>
<td>pG5f1, pG5f3-</td>
<td>pGEM-5Zf(−):EcoRV TP901-1 bla</td>
<td>This study</td>
</tr>
<tr>
<td>pG5f12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pB2-1</td>
<td>pBluescriptISK(+)::4.7-kb EcoRI-EcoRV TP901-1 bla</td>
<td>This study</td>
</tr>
<tr>
<td>pB2-2</td>
<td>pBluescriptISK(+)::2.5-kb EcoRI-EcoRV TP901-1 bla</td>
<td>This study</td>
</tr>
<tr>
<td>pG7f1-pG7f8a-b</td>
<td>pGEM-7Zf(+)::EcoRI TP901-1 bla</td>
<td>This study</td>
</tr>
<tr>
<td>pG7f13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a The pUC7,erm plasmid was obtained by cloning the 1.1-kb HinP1 fragment from pIL253 into the HinclII site of pUC7. The erm cassette can be moved on a 1.1-kb BamHI or EcoRI fragment.

nm (CN15; Vilber Lourimat, Marne La Vallée, France). The average exposure time was approximately 23 s. The suspension was transferred to an equal volume of twofold concentrated CsCl and incubated in darkness at 30°C until lysis. Liberated phages were precipitated by the supernatant by incubation with NaCl (1 M) and polyethylene glycol 6000 (10% [wt/vol]) and further purified by CsCl step gradients as described for bacteriophage λ (25).

Lysogenization of the indicator strains. The indicator strains and their phages were mixed in a CFU/PFU ratio of 10²:10⁷ in a total volume of 400 μl. The phage were allowed to adhere to the bacterial cells for 20 min at 30°C. The mixture containing the bacteriophage complexes was diluted and plated on M17 plates, each containing an additional 10⁸ phage. The plates were incubated at 30°C for 2 days. Colonies were purified three times on M17 plates.

DNA preparation. DNA extraction from purified phage particles was performed as described for λ (25). Extraction of chromosomal DNA was performed as described for <i>E. coli</i> (25), with the modification that cells were treated with 20 mg of lysozyme per ml for 4 h before lysis. Recombinant plasmid DNA was isolated by the alkaline lysis technique, and preparative portions were further purified by CsCl-ethidium bromide equilibrium gradient centrifugation (25). All DNA preparations were resuspended and stored in TE buffer (10 mM Tris-HCl [pH 8.0], 1 mM EDTA).

Recombinant DNA techniques. Restriction endonuclease enzymes and buffer systems were supplied by Boehringer Mannheim Biochemicals (Mannheim, Germany), as were T4 DNA ligase and calf intestine alkaline phosphatase. The enzymes were used as recommended by the supplier. Analytical and preparative agarose gel electrophoresis was conducted with TAE buffer (40 mM Tris-acetate [pH 8], 1 mM EDTA). DNA restriction fragments were isolated from excised agarose gel segments with the Prep-A-Gene kit (Bio-Rad Laboratories, Hercules, Calif.).

Construction of plasmids. Library plasmids were constructed by ligating purified TP901-1 fragments into corresponding endonuclease-digested calf intestine alkaline phosphatase-treated vector pGEM-7zf(+) (EcoRI and ClaI fragments), pGEM-5zf(−) (EcoRV fragments) or BluescriptISK+ (EcoRI-digested EV2 fragment). The integration plasmid pBC143 was obtained by inserting a 1.1-kb BamHI fragment, containing the <i>erm</i> cassette from pUC7,erm, into BamHI-digested and calf intestine alkaline phosphatase-treated pG7f2. pGEM-7zf(+) containing the <i>erm</i> cassette (pBC144) served as a control.

The rescue plasmids, containing the attL and attR regions, were obtained by digestion of chromosomal DNA of <i>L. cremoris</i> BC1014 with PsiI, SacI, and BamHI. The digested chromosomal DNA was ligated at concentrations of 5 μg/ml.

The cloning of the attB region from <i>L. cremoris</i> 3107 was
performed by digesting the 1.5-kb PCR product with Sau3A1 and ligating the 224-bp attB-containing fragment into BamHI-digested and calf intestine alkaline phosphatase-treated pGEM-7zf(+).

Transformation and selection. *E. coli* XL1-Blue was made competent with CaCl₂ and was transformed as described by Sambroek et al. (25). Transformants were selected on Luria-Bertani plates containing 100 μg of ampicillin per ml, 10 μg of tetracycline per ml, 200 μg of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) per ml, and 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG). When introducing the erm cassette, selection was performed on 100 μg of ampicillin per ml and 30 μg of erythromycin per ml.

L. lactis MG1363 and LM0250 were transformed by electroporation according to the method described by Holo and Nes (12). *L. cremoris* 3107 was transformed with this procedure, slightly modified, by propagating cells in M17 broth containing 0.2 M sucrose instead of 0.5 M sucrose. Transformants were selected on 1 μg of erythromycin per ml.

Hybridization. DNA restriction fragments separated on agarose gels were transferred to GeneScreen+ membranes (Du Pont, NEN Research Products, Boston, Mass.) by vacuum blotting as recommended by Pharmacia (Uppsala, Sweden). Colonies were transferred to BA-S 85 nylon membranes (Schleicher & Schuell, Dassel, Germany) for colony hybridizations as recommended by Boehringer Mannheim (1). Recombinant plasmids used as probes were digested with restriction enzymes before denaturation. Probes were labeled with digoxigenin-11-dUTP, and hybridizations were performed as recommended by the supplier (Boehringer Mannheim). Digoxigenin-11-dUTP-labeled DNA digested with HindIII (Boehringer Mannheim) was used as a molecular marker for the hybridizations.

Amplification of the attB, attL, attR, and attP regions. The attB region from *L. cremoris* 3107 was isolated by PCR with oligonucleotides BI-POB1(inv) (biotin-CATCCCCCTACTAATCCGAAC) and P4-BOP6(inv) (GATGGACAGGAGTCGATTAC) obtained from attL and attR sequences, respectively, resulting in a product with a size of about 1.5 kb. The attL, attR, and attP regions were amplified with primers BI-EV1ISP6(inv) (biotin-CAGTCCGCTCAAGCTCATGA) and P4-BOP6(inv) for attL, BI-POB1(inv) and P4-Rb (GATGGACAGGAGTCGATTAC) for attR, and BI-EV1ISP6(inv) and P4-Rb for attP. The amplified products had sizes of approximately 1.5, 0.7, and 0.7 kb, respectively. The primers BI-EV1ISP6(inv) and P4-Rb were obtained from known phage sequences. Annealing (1 min at 50°C) and extension (1 min at 72°C) were carried out on a Perkin-Elmer Cetus DNA Thermal Cycler 480 (Perkin-Elmer Cetus, Branchburg, N.J.). The GeneAmp PCR reagent kit with AmpliTaq DNA polymerase was used as recommended by the supplier (Perkin-Elmer Cetus).

DNA sequencing. The DNA sequences were determined by the method of Sanger et al. (26), performed as instructed by the Sequenase version 2.0 DNA sequencing kit (U.S. Biochemical Corp., Cleveland, Ohio). Sequencing of the insert ends of library clones was performed by using 1 pmol of T7 (TAATACGACTCACTATAGG) and SP6 (GATTTAGTGACACTATAG) primers, respectively. The attL region sequence was obtained in clones pBOP1 and pBOP6, with 2 pmol of primer P1-EV1ISP6(inv) (TAATGGATTTTCTAGGCAGAAACCTTGTATACAC) in the reaction mixture. The attR region sequence was obtained in clones pBOP1 and pBOP2, with 2 pmol of primer P1-EV9SP6(inv) (GCTCAACAACTTTGTATACAC) in the reaction mixture. The flanking sequences of EI11 were obtained on pG5I by using two primers, P1-7f11.Trev (CATA AAGGGGTATATCCCG) and P1-7f11.Srev (ACCCATTGAA CATGAGC), reading out of the EI11 fragment. The primers P1-7f11.Srev (AAACGGCAAGGAAGTGTC), P1-7f11.Srev (GAGATTATCAATCCGTTTC), and P1-7f11.Srev (TGATAC GAATGCTGAAG), reading out of the fragments EI4, EI9, and EI10, respectively, were also used on pG5I.

Single-stranded templates of the amplified genomic attL, attR, and attB regions were prepared with Dynabeads M-280 streptavidin, as recommended by the supplier (Dynal, Oslo, Norway). The sequencing was performed with the internal primers P-AITBL (CTACTGCTGGTACAC) for the attL and attB regions and P-EV9SP6(inv) for the attR and attP regions. All primers used were delivered by P. Hobolth, Lyngby, Denmark. Computer analyses of the sequence data were carried out with the GCG Sequence Software Package (Genetics Computer Group, Inc., Madison, Wis.).

Nucleotide sequence accession number. The nucleotide sequence data shown in Fig. 6 have been deposited in GenBank under accession no. L19215.

RESULTS

Biological characterization of phage TP901-1. Braun et al. (2) demonstrated that the bacterial strains *L. cremoris* 901-1 and 936-1 carried the prophages TP901-1 and TP936-1, respectively. The prophages were furthermore shown to be inducible by UV light. We performed the initial studies with both phages and did not discover any differences between TP936-1 and TP901-1. However, since it was initially easier to make large-scale phage preparations by UV light induction from *L. cremoris* 901-1 than from 936-1, we have chosen TP901-1 for further studies. When similar data have been obtained for TP936-1, it will be mentioned.

Typically, phage titers of 10⁸ PFU/ml were obtained for both phages after UV light induction. Both phages formed plaques on the two indicator strains, *L. cremoris* Wg2 and 3107. However, the plaques obtained with *L. cremoris* Wg2 were smaller and more turbid than those observed when *L. cremoris* 3107 was used. The phage titers were identical, independent of the indicator strain.

Extra additions of Mg²⁺ or Ca²⁺ to the M17 medium did not increase the phage titers. The plaque-forming ability of the phage lysates could, however, be reduced 4 orders of magnitude by addition of 20 mM citrate, indicating that divalent ions present in the M17 medium were necessary for phage infection.

Attempts to isolate a phage-cured derivative of *L. cremoris* 901-1 have so far been unsuccessful. However, we were able to demonstrate the complete lysogenic cycle in both indicator strains. TP901-1 lysogenic derivatives of *L. cremoris* Wg2 and 3107 were isolated. The resultant lysogens were immune to infections with TP901-1 and TP936-1. Similar results were obtained with isolates lysogenic for TP936-1.

Another criterion of the lysogenic state, the spontaneous release of phages during growth of the lysogenic bacterium, was also fulfilled. Thus, overnight cultures of the lysogenized strains would typically contain 10⁷ to 10⁹ PFU/ml. Also, *L. cremoris* 901-1 and 936-1 released phages in the same order of magnitude. Both the UV light-induced phages and the lytic proliferated phages were able to lysozyme the indicator strains.

Molecular characterization of phage TP901-1. Restriction analyses of the DNA isolated from UV light-induced TP901-1 and TP936-1 were performed. The restriction fragment patterns were identical for all enzymes tested. The EcoRII digest was identical to the pattern for phage C3-T1 previously published (13). Also, the sizes of the restriction fragments from
Restriction enzyme digestions gave the following fragment sizes (in kilobases): EcoRI fragments, EI1, 9.5; EI2, 6.5; EI3, 6.0; EI4, 4.4; EI5, 2.4; EI6, 1.9; EI7, 1.8; EI8a, 1.5; EI8b, 1.5; EI9, 1.2; EI10, 0.8; EI11, 0.4; EI12, 0.3; EI13, 0.2; AccI fragments, A1, 12.0; A2, 7.7; A3, 7.3; A4, 3.9; A5, 3.3; A6, 2.2; A7, 2.0; BclI fragments, B1, 26.0; B2, 10.5; B3, 1.9; ClaI fragments, C1, 19.6; C1a, 16.0; C2, 10.2; C3, 6.3; C4, 2.3; EcoRV fragments, EV1, 8.4; EV2, 7.6; EV3, 6.0; EV4, 4.3; EV5, 3.1; EV6, 2.7; EV7, 1.9; EV8, 1.6; EV9, 1.0; EV10, 0.9; EV11, 0.6; EV12, 0.2. Fragments A2, C1, B2, and EV2 are submolar but are present in the prophage at equimolar proportions and therefore are included in the calculation of the phage TP901-1 genome size, in contrast to C1a, which is submolar but is not present in the prophage at equimolar proportions. *attP*, phage attachment site; *pac*, phage packaging region. The linear scale is given in kilobases.

Cloning of TP901-1 DNA. A complete library of the 14 EcoRI fragments from TP901-1 was constructed in pGEM-7zf(+). The library clones were designated pG7f1 to pG7f13 (including pG7f8a and pG7f8b). Similarly, 11 of 12 EcoRV fragments were cloned into pGEM5-zf(−) (designated pG5f1 to pG5f12, excluding pG5f2). It was not possible to obtain a clone containing the entire EV2 fragment. After cloning the EV2 fragment with EcoRI, the two EcoRI-EcoRV fragments were cloned in BluescriptIIISK+(pBH2-1 and pBH2-2). Also, the 2.3-kb ClaI (C4) fragment was cloned in pGEM-7zf(+) (pBC104).

Identification of *attP*, *attL*, and *attR*. In order to identify the region containing the attachment site (*attP*) on phage TP901-1, a series of hybridization experiments were conducted with labeled TP901-1 DNA as a probe. When ClaI-digested chromosomal *L. cremoris* 901-1 DNA was compared with ClaI-digested phage TP901-1 DNA, it was observed that a 2.3-kb ClaI fragment (C4) was not present in the chromosomal digest (data not shown). Instead, a 3.6-kb fragment and a 4.2-kb fragment, not present in the phage, hybridized to the TP901-1 probe. This was also seen when pBC104 (containing C4) was used as a probe (Fig. 2). The hybridization confirmed that the *attP* region was within this fragment and suggested that the two chromosomal junctions of *L. cremoris* 901-1, containing the *attL* and *attR* regions, were located on 3.6- and 4.2-kb ClaI fragments, respectively. Further hybridizations, with the three EcoRV library plasmid clones mapping within the C4 fragment used as probes, located *attP* on the 0.2-kb EcoRV (EV12) fragment (data not shown). One of the flanking EcoRV fragments (EV11) hybridized to the 3.6-kb ClaI junction (*attL* region), while the other (EV9) hybridized to the 4.2-kb junction (*attR* region).

When ClaI-digested chromosomal DNA from independently isolated TP901-1-hyosynogenized derivatives of *L. cremoris* 3107 and Wg2 (10 from each strain) were probed with pBC104, all 20 isolates gave a hybridization pattern similar to that of *L. cremoris* 901-1 (Fig. 2, lane 3). No signals from the parental CP14 region were seen. Digestion with *ClaI* (Fig. 1) maps the *attP* region as 2.3 kb.

FIG. 1. Restriction map of TP901-1 phage genome. The circular phage TP901-1 DNA molecule has been opened at a *ClaI* site. Restriction enzyme digestions gave the following fragment sizes (in kilobases): EcoRI fragments, EI1, 9.5; EI2, 6.5; EI3, 6.0; EI4, 4.4; EI5, 2.4; EI6, 1.9; EI7, 1.8; EI8a, 1.5; EI8b, 1.5; EI9, 1.2; EI10, 0.8; EI11, 0.4; EI12, 0.3; EI13, 0.2; AccI fragments, A1, 12.0; A2, 7.7; A3, 7.3; A4, 3.9; A5, 3.3; A6, 2.2; A7, 2.0; BclI fragments, B1, 26.0; B2, 10.5; B3, 1.9; ClaI fragments, C1, 19.6; C1a, 16.0; C2, 10.2; C3, 6.3; C4, 2.3; EcoRV fragments, EV1, 8.4; EV2, 7.6; EV3, 6.0; EV4, 4.3; EV5, 3.1; EV6, 2.7; EV7, 1.9; EV8, 1.6; EV9, 1.0; EV10, 0.9; EV11, 0.6; EV12, 0.2. Fragments A2, C1, B2, and EV2 are submolar but are present in the prophage at equimolar proportions and therefore are included in the calculation of the phage TP901-1 genome size, in contrast to C1a, which is submolar but is not present in the prophage at equimolar proportions. *attP*, phage attachment site; *pac*, phage packaging region. The linear scale is given in kilobases.

FIG. 2. Identification of the TP901-1 *attP* site in a Southern blot of ClaI-digested DNA. Lanes: 1, TP901-1 phage DNA; 2 to 4, chromosomal DNA from *L. cremoris* 901-1, ES46, and 3107, respectively; 5, HindIII-digested λ DNA. The DNA was hybridized to the digoxigenin-labeled probe of pBC104 containing the 2.3-kb ClaI fragment from TP901-1. The positions of the *attL* and *attR* junctions are indicated. The position of the TP901-1 *attP* fragment is also marked. The fragment sizes are given in kilobases.
strain L. cremoris 3107 were observed (Fig. 2, lane 4). Hybridization signals corresponding to the 2.3-kb ClaI fragment were also observed. This is probably due to concatanemer phage DNA in the chromosomal DNA preparations. These results show that the integration event is specific and that only one major attachment site is found in L. cremoris 3107 and Wg2. This attachment site (attB) is located on a 5.5-kb ClaI fragment (data not shown).

Construction of an integration vector. Phage-encoded functions required for integration of temperate bacteriophages (i.e., attP and intgrase) are often tightly clustered in the phage genome (20, 21, 23, 29, 30). The attP region of TP901-1 is located almost in the center of the 6.5-kb EcoRI fragment (E12). This fragment might thus contain the putative phage-encoded integrase. Therefore, pBCl43 and pBC144 were constructed by inserting a gram-positive selection marker into pGEM7 and pGEM7-zf(+) respectively, and the erm gene from pUC7.erm was used. Both plasmids lack an origin of replication which functions in lactococci. Putative transformants obtained from electroporation of pBC143 into lactococcal strains should therefore be integrants.

Electrocompetent L. cremoris 3107 cells were transformed with pBC143, and a erythromycin-resistant (Em') transformant per μg of DNA was isolated (BC1014), while the control plasmid pBC144 did not give any Em' clones. These experiments were difficult to evaluate because of the very low transformation efficiency of L. cremoris 3107. Even plL253, which is able to replicate, gives only 10^3 transformants per μg of DNA. The strains L. lactis MG1363 and LM0230 are more easily made electrocompetent, and transformation frequencies of 10^5 and 10^6 transformants per μg of plL253 DNA, respectively, were measured in our laboratory. We therefore tested whether the putative integration vector pBC143 could work in L. lactis MG1363 and LM0230. We obtained 10^2 and 10^3 Em' colonies per μg of pBC143 DNA, respectively, while no colonies were found when the control plasmid pBC144 was used (e.g., <1/μg of DNA). These numbers strongly indicate that integration occurs when pBC143 is used. This was confirmed by hybridization analysis of the chromosomal DNA of the corresponding Em' transformants. One L. cremoris 3107 and three independently isolated Em' transformants from both L. lactis MG1363 and LM0230 were analyzed. The chromosomal DNA was digested with ClaI and used for Southern blot experiments, with pBC104 as a probe. The hybridization results with one transformant from each strain are shown in Fig. 3. None of the transformants contained the 2.3-kb C4 fragment carrying attP, which is present in pBC143 (Fig. 3, lane 2). Instead, all transformants showed hybridization to two new ClaI fragments not present in pBC143. In L. cremoris BC1014, the two fragments were 3.6 and 4.2 kb, similar to the sizes found for the attL and attR fragments, respectively, in L. cremoris 901-1 (Fig. 3, lanes 3 and 5). In L. lactis LM0230::pBC143 (BC1022) and MG1363::pBC143 (BC1017), a 3.6-kb fragment was also present (attL), while the attR-containing fragment had a size of 11 kb (Fig. 3, lanes 7 and 8). All transformants showed hybridization signals corresponding to the vector ClaI fragments of 1.8 and 6.5 kb. No hybridization signals from the chromosomal DNA from the recipient strains L. cremoris 3107 and L. lactis LM0230 and MG1363 were observed (Fig. 3, lanes 4, 6, and 8).

The results therefore demonstrate that pBC143 has integrated into the chromosome of all the recipient strains by site-specific integration with the attP region harbored on the plasmid.

Cloning of the attL and attR regions. Attempts to clone the attL and attR regions from the chromosome of L. cremoris 901-1 were successful only for attL. After isolation and cloning of chromosomal ClaI fragments in the 3- to 4-kb size range into pGEM-7zf(+), two clones hybridizing to the 2.3-kb C4 fragment of TP901-1 (containing attP) were identified. Both clones contained a plasmid having a ClaI insert of the expected size of 3.6 kb. Further restriction and hybridization analyses with ClaI and EcoRV confirmed that the plasmids did contain the attL region from the chromosome of the lysogenic L. cremoris 901-1. One of the plasmids, designated pBOP6, was used for DNA sequencing. By using another approach—the method of plasmid rescuing—all the attL and the attR regions were cloned from L. cremoris 3107. Advantage was taken of the integrant in L. cremoris BC1014. By digestion of the chromosomal DNA of L. cremoris BC1014 with a restriction enzyme unique for pBC143, relaxation of the chromosomal digest, and transformation in E. coli, the chromosomal fragment containing the ori of pGEM-7zf(+) and the bla gene could be selected for. A model of the rescue clonings is shown in Fig. 4. The enzymes PsrI, SacI, and BamHI were used and gave several identical clones with sizes of 10, 14, and 12.5 kb, respectively, as expected from Southern blot analysis (data not shown).

The PsrI clones were shown, by Southern blot analysis with pBC104 as probe, to harbor the attL region. They contained the 3.6-kb ClaI-attL fragment and the 0.65-kb EV11 fragment. Similarly, the SacI and BamHI clones were shown to contain the attR region. They contained the 4.2-kb ClaI-attR fragment and the 1.0-kb EV9 fragment. One representative of each type of rescue plasmid was used for DNA sequencing.

DNA sequences of attP, attL, attR, and attL and attR localization of the core region. The 189-bp EV12 fragment, on which the attP site had been localized, was sequenced. The attP sequence was further verified with a PCR product derived directly from TP901-1 DNA. The attL and attR sequences from L. cremoris BC1014 were obtained by sequencing the junction regions from the plasmid rescue. Additionally, the attL junction sequence from L. cremoris 901-1 was obtained from the pBOP6 plasmid. These sequences were verified with PCR products obtained from the chromosome of the original lyso-
genic strain *L. cremoris* 901-1, as well as with PCR products obtained from two independent lysogenic derivatives of *L. cremoris* 3107. The *attB* sequence from *L. cremoris* 3107 was obtained by cloning an internal 224-bp *Sau3A* fragment isolated from a PCR-amplified 1.5-kb fragment containing the *attB* region. Five clones were sequenced in order to avoid PCR-derived mutations. All five clones had identical sequences.

Comparison of these sequences identified a common 13-bp region, 5'-TCAAT(T/C)AAGGTA-3' with a 1-bp mismatch, as shown in Fig. 5. The integration event must have taken place within the left 5 bp (5'-TCAAT-3'), a region that is traditionally called the core region.

The *attB* core sequence was found to be located within an open reading frame 96 bp downstream of the start codon. Integration of TP901-1 disrupts the open reading frame, and a stop codon is introduced 24 bp downstream of the core sequence in the *attL* region. The open reading frame is more than 84 amino acids long, but the full size has not yet been determined. A computer analysis of the N-terminal showed homology to precursors of fimbrial and secretion pathway proteins from different bacteria.

The 300-bp DNA surrounding the core sequence of TP901-1 was sequenced from the pBC104 plasmid (Fig. 6). Like the attachment site region of phage λ (16) and other temperate phages from lactic acid bacteria (21, 23), the region surrounding the TP901-1 core is relatively A+T rich. The 300-bp region flanking the TP901-1 core contains about 72% A+T. The TP901-1 *attP* region contains several direct and inverted repeats. The DNA analysis revealed four inverted repeats (r2, r3, r4, and r6) and two direct repeats (r1 and r4) (Fig. 6). These features are typical of other site-specific systems of recombination.

DISCUSSION

Phage TP901-1 has been characterized, and a circular restriction map of the phage genome, including the *attP* and *pac* regions, has been constructed. Phage TP901-1 and the type phage TP936-1 both belong to the P335 group of phages (2). According to our results, both phages seem to be identical. The restriction patterns are identical, with five enzymes. Also, the
phages TP901-1 and TP936-1 are homimmune (i.e., \emph{L. cremoris} 3107 and \textit{Wg2} derivitives lysogenic for TP936-1 are resistant to infections by TP901-1 and vice versa, and TP901-1 hybridizes to all \textit{EcoRI} bands of TP936-1 [6]). In addition, the two major phage proteins of TP901-1 were estimated to be 31 and 23 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis \cite{6}; these are the same sizes reported for the two major proteins of TP936-1 \cite{2}. Phage C3-T1 also seems to be identical to TP901-1, or at least seems to be very closely related. The sizes of the restriction fragments from \textit{EcoRI}, \textit{XhoI}, \textit{SphI}, \textit{PvuII}, and \textit{BclI} digestions of phage C3-T1 DNA (13) are the same as those found for TP901-1 \cite{6}. Furthermore, the \textit{BclI} maps of the two phages seem identical, as do the locations of the \textit{att} and \textit{pac} regions (Fig. 1). Also, TP901-1 DNA hybridizes to all \textit{EcoRI} fragments of C3-T1 (6). The sizes of the major phage proteins could not be compared, since the protein profile for phage C3-T1 has not been reported. The genome sizes of the three phages have been estimated to be 38.4 kb for TP901-1 (this study), 37.8 kb for C3-T1 (13), and 37.8 kb for TP936-1 \cite{2}. Finally, DNA sequences of 200 bp covering the \textit{attP} region were found to be identical in all three phages (6). Phage C3-T1 thus belongs to the P335 group of phages and does not represent a new phage species, as suggested by Jarvis et al. \cite{13}. Of the two other well-characterized lactococcal phages, \textit{\phiLC3} and \textit{\phiKS-T}, only \textit{\phiLC3} hybridizes to TP901-1 and thus belongs to the P335 group of phages. The restriction pattern of phage \textit{\phiLC3} is clearly different from that of TP901-1, and \textit{\phiLC3} has cohesive ends, in contrast to the \textit{pac}-type phage TP901-1. Furthermore, the \textit{attP} and \textit{attB} sequences determined for TP901-1 (Fig. 5) are clearly different from those reported for \textit{\phiLC3} \cite{21}, indicating that the two phages contain different integration systems.

Our results demonstrate that phage TP901-1 is able to lysogenize the indicator strains \textit{L. cremoris} 3107 and \textit{Wg2}. This was not shown for phage C3-T1, and, to our knowledge, among lactococcal phages, this has been shown only for the phages \textit{\phiT712} and \textit{\phiLC3} \cite{10,22}. Lysogenization by phage TP901-1 results in integration of the phage genome into the bacterial chromosome by a site-specific recombination process following Campbell's classic model of integration for phage \textit{\lambda} \cite{3}. Integrative recombination takes place between the \textit{attP} region residing within the 2.3-kb \textit{ClaI} fragment (C4) of TP901-1 and the \textit{attB} region found within a 5.5-kb \textit{ClaI} fragment of the host chromosome of the indicator strains. As a result of the integration event, the \textit{attP}- and \textit{attB}-containing fragments split into two \textit{ClaI} junction fragments with sizes of approximately 3.6 and 4.2 kb (\textit{attl} and \textit{attR}, respectively).

Analysis of 20 independently isolated lysogens showed that only one major \textit{attB} site exists in the indicator strains. The same \textit{attB} site was used when the vector \textit{pBC143}—containing the 6.5-kb EI2 \textit{attP} fragment from TP901-1—was integrated into the chromosome. Isolation and sequencing of \textit{attP}, \textit{attL}, \textit{attR}, and \textit{attB} regions resulted in the finding of a 5-bp core followed by a 7-bp identical sequence. The identities of the \textit{attR} and \textit{attL} sequences were confirmed by sequencing of PCR products from several independent lysogens and plasmid insertions of \textit{L. cremoris} 3107, as well as those from the lysogenic \textit{L. cremoris} 901-1. The T-to-C mismatch was found in all \textit{attR} regions (a total of nine were sequenced) and is thus not due to a mutation. Also, the \textit{attL} sequence was verified by PCR with both the phage TP901-1 DNA and the integration vector \textit{pBC143} as the template. The presence of 1 bp separating the 5-bp core and the 7-bp identical sequence was found in \textit{attP} and \textit{attL} and \textit{attR} and \textit{attB}, respectively. Hence, the recombination between the phage genome and the host chromosome must occur in the identical 5-bp segments and not in the 7-bp region. This is, to our knowledge, the shortest core region described for a temperate phage.

The core regions have been determined from the temperate phages \textit{\phiLC3}, \textit{\phiAdaH}, \textit{L54a}, \textit{\phi13}, and \textit{\phi11} isolated from lactococci, lactobacilli, and staphylococci. The sizes were 9 (21), 16 (23), 18 (17), 14 (7), and 10 (18) bp, respectively. When the core regions and the surrounding \textit{attP} sequences from these phages were compared with those determined for TP901-1, the DNA sequences from TP901-1 were found to be clearly different, indicating that the integration system of TP901-1 is a unique system that has not been previously reported. The lactococcal phages \textit{\phiLC3} and TP901-1 probably use common host proteins for the site-specific recombination process. It may be of significance for the binding of such proteins that the r1 repeat sequences in TP901-1 are almost identical to the R4 repeats in \textit{\phiLC3} (21). Also, the palindromic r6 sequences in TP901-1 show considerable sequence homology to the R3 palindrome reported in \textit{\phiLC3} (21).

The \textit{attB} region from \textit{L. cremoris} 3107 does not show any homology to genes encoding tRNA, a preferred insertion site for several bacteriophages (4, 11, 19, 24). In contrast, the TP901-1 \textit{attB} was found to be located in a region encoding the N terminal of a putative open reading frame with a size of more than 84 amino acids. Insertion of the phage disrupts the reading frame (24 bp) downstream of the core sequence.

The integrative properties of plasmid \textit{pBC143} clearly show that the phage-encoded functions necessary for the site-specific integration are present on the EI2 fragment. Apart from the \textit{attP} region, we expect to find the \textit{int} gene of TP901-1, and experiments with the purpose of identifying \textit{int} are in progress. The finding that the integration system of TP901-1 is functioning in the plasmid-free laboratory strains \textit{L. lactis} MG1363 and LM0230 is very important. Derivatives of the integration vector should therefore be able to function as important tools for single-copy cloning of genes and for the construction of vectors for identification of promoters, terminators, and signal sequences, etc. Furthermore, the integration vectors, on the basis of TP901-1, may be working in many different \textit{Lactococcus} strains and thus may be useful for the construction of recombinant derivatives of industrial starter cultures.
ACKNOWLEDGMENTS

This work was supported by FØTENK, The Danish Governmental Program for Food Science and Technology, through the Center for Lactic Acid Bacteria.

We thank H. Neve for L. cremoris 901-1, 936-1, 3107, and Wg2; D. Lillehaug for phage φL3C DNA; A. Hillier for L. cremoris BK-5; A. Jarvis for phage C3-T1 DNA; and W. M. de Vos for the pUC7,erm plasmid. We also thank H. Neve, J. Josephsen, and E. B. Hansen for helpful discussions.

REFERENCES

