Construction of a Modified Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus aureus and Purification by Immobilized Metal Affinity Chromatography

C. Y. ERNIE WU, LARRY C. BLASZCZAK, MICHELE C. SMITH, AND PAUL L. SKATRUD

Infectious Disease Research, Eli Lilly and Company, Indianapolis, Indiana 46285

Received 19 November 1993/Accepted 16 December 1993

The mecA-27r gene, which encodes PBP2a-27r, was modified by site-specific mutagenesis, resulting in replacement of the N-terminal membrane anchor with a short chelating peptide (CP-PBP2a-27r). CP-PBP2a-27r retained the same binding affinity for β-lactam antibiotics as the wild-type enzyme. Approximately 95% pure CP-PBP2a-27r was recovered in a single step by use of chelating-peptide-immobilized metal ion affinity chromatography.

Methicillin-resistant staphylococci cause serious nosocomial infections. These infections represent a leading cause of morbidity and mortality in hospitals and chronic care facilities (2, 6). Resistance to methicillin in staphylococci has been associated with the production of a membrane-bound, high-molecular-weight penicillin-binding protein (PBP2a) which exhibits weak affinity for penicillins and cephalosporins (1, 8). Presumably, PBP2a can substitute for the transpeptidase activity of other penicillin-binding proteins and allow survival of the organism in the presence of otherwise lethal concentrations of β-lactam antibiotics (5). The mecA gene, which encodes PBP2a, has been cloned, sequenced, and analyzed by in vitro mutagenesis (7, 9, 11, 12). PBP2a is composed of three domains: an N-terminal membrane-spanning region which anchors PBP2a to the external surface of the cell membrane, a putative transglycosylase domain, and a transpeptidase domain containing the target of β-lactam antibiotics. Membrane-bound proteins are generally difficult to purify and crystallize. In a structure-based drug design approach for the development of an inhibitor for PBP2a, the mecA-27r gene from the methicillin-resistant Staphylococcus aureus strain 27r was modified by removing the region that encodes the membrane-spanning region. Expression of the modified mecA-27r gene in Escherichia coli resulted in production of a fully active water-soluble form of PBP2a-27r (12). At that point, a facile purification process was designed for recovery of PBP2a that would be suitable for further studies. Kasher and colleagues have described a single-step purification of recombinant human papillomavirus type 16 E7 oncoprotein by use of chelating-peptide-immobilized metal ion affinity chromatography (CP-IMAC) (3). Here we report the construction of another modified form of PBP2a-27r and the application of CP-IMAC for purification of PBP2a-27r.

In order to apply the CP-IMAC process to the purification of PBP2a-27r, the mecA-27r gene was modified by in vitro mutagenesis (4). An NcoI restriction site followed by a sequence that encodes a short chelating peptide (MGHWHHH) was inserted by site-specific mutagenesis just upstream of, and in frame with, the triplet which codes for amino acid residue 23 of PBP2a-27r. The synthetic oligodeoxynucleotide used as the mutagenic primer is shown in Fig. 1A. Alterations induced in PBP2a-27r are illustrated in Fig. 1B. The template for mutagenesis was a portion of the mecA-27r gene cloned into M13. This clone carried the 5′ region of the mecA-27r gene (12). After mutagenesis, the modified 5′ end of the mecA-27r gene was reattached to the remainder of mecA-27r in an E. coli expression vector as described previously (12). The resulting plasmid, pEWSA31, (Fig. 1C), contained the modified mecA-27r gene encoding an altered version of PBP2a-27r in which the transmembrane domain was removed and replaced with a short chelating peptide (CP-PBP2a-27r). Expression of the modified mecA-27r gene in plasmid pEWSA31 was under the control of the heat-inducible lambda P1 promoter.

Modifications made to the protein may have affected its ability to bind penicillin. Therefore, it was necessary to examine the interaction of CP-PBP2a-27r with β-lactams. Crude cell extracts from E. coli cells transformed with pEWSA31 were used to assess the penicillin-binding capacity of CP-PBP2a-27r. When tested for binding activity in a competition assay using cefamandole in competition with β-lactamase V, the 50% inhibitory concentration for CP-PBP2a-27r was estimated to be between 90 and 180 μg of cefamandole per ml (Fig. 2). The wild-type form of this enzyme from staphylococcal membranes also exhibited a 50% inhibitory concentration of between 90 and 180 μg of cefamandole per ml under similar conditions (12). Similar results were obtained with other β-lactam compounds (data not shown). The removal of the transmembrane domain and its replacement with the short chelating peptide appeared not to affect the β-lactam-binding efficiency of the enzyme.

CP-PBP2a-27r was produced by introducing plasmid pEWSA31 into E. coli DH5α and exposing these cells to conditions that induced expression of the modified mecA-27r gene. A sample from an overnight broth culture of E. coli DH5α containing plasmid pEWSA31 was streaked onto TY (Bacto-Tryptone, 10 g/liter; Bacto-yeast extract, 5 g/liter; Bacto-Agar, 15 g/liter) agar plates containing 10 μg of tetracycline per ml. The inoculated plates were incubated for 4 h at 30°C. Expression of CP-PBP2a-27r was induced by increasing the temperature of incubation to 41°C for an additional 4 h. Under these conditions, the bulk of CP-PBP2a-27r was found in inclusion bodies (granules). Alternatively, a broth culture could be used for expression. To isolate granules containing CP-PBP2a-27r, 1 g of cells (wet weight) was enzymatically
digested by suspension in 10 ml of a solution containing 4 mg of lysozyme, 5 mM EDTA, and 50 mM Tris (pH 8.0). The cell suspension was incubated at room temperature for 15 min or until the solution became viscous. The lysozyme-treated cell suspension was cooled on ice. The chilled suspension was sonicated three times with a sonic dismembrator to lyse the cells (30-s sonic bursts with a 1-min interval between bursts, with cell suspension on ice between bursts). The cell lysate was added to 30 ml of 50 mM Tris (pH 8.0) containing 2 g of Whatman DEAE-cellulose, mixed, and filtered through a Buchner funnel with Whatman no. 1 filter paper. A weak vacuum was applied, and the DEAE trapped on the filter was washed with Tris buffer until the filtrate cleared. The filtrate containing the granules was centrifuged at 4,300 × g for 20 min. The pellet was washed first in 20 ml of 0.1% Triton–10 mM EDTA, then in 20 ml of 1 mM KCl, and finally in 20 ml of distilled water. Granules harvested by centrifugation (12,000 × g for 20 min) from the final wash were resuspended in water and stored at –20°C.

In order to proceed with protein purification, it was necessary to release the proteins trapped in the granules. Granules containing CP-PBP2a-27r were solubilized in sulfitolysis reagent (7.5 M urea, 0.5 M Tris-HCl, 100 mM Na2SO3, 10 mM Na2S2O5, pH 8.2) and filtered through a 0.45-μm-pore-size filter before application to the Zn(II) IMAC purification column. Lane 1 of the inset in Fig. 3 illustrates the proteins released from the granules.

The CP-IMAC purification procedure used to purify CP-PBP2a-27r was modified from the method described by Kasher and coworkers (3). Briefly, an HR 10/10 Pharmacia column was poured with Pharmacia Fast-Flow Chelating Gel, connected to a fast protein liquid chromatography LCCS00 fraction collection system (Pharmacia Biotech, Piscataway, N.J.), and washed with 5 ml of distilled water. The metal ion [Zn(II)] was loaded onto the column by applying 6 ml of a 50 mM ZnCl2 solution to the column. The metal-loaded column was washed with 5 ml of distilled water and equilibrated with buffer A (50 mM NaH2PO4, 0.5 M NaCl, 7 M urea, pH 8.0). A 2-ml sample of the sulfitolysis solution containing the solubilized proteins from granules was loaded onto the column. The column was washed with buffer A at 0.25 ml/min until the A280 of the eluate was negligible, generally about 30 min. The bound material was then eluted by introducing a displacing ligand. Buffer B, used to generate the imidazole gradient, consisted of 0.5 M imidazole, 50 mM NaH2PO4, 0.5 M NaCl, and 7 M urea (pH 8.0). A gradient of 0 to 60% buffer B was applied to the column over 90 min to elute CP-PBP2a-27r. The majority of the protein was eluted in the first peak, as illustrated by the A280 tracing in Fig. 3. CP-PBP2a-27r was eluted with an ascending gradient of imidazole as a single peak of protein.
FIG. 3. Zn(II) CP-IMAC column purification of PBP2a-27r. The eluant obtained from the column was fractionated and analyzed for the presence of an enriched protein band. The solid line represents the \(A_{280} \) of the eluant. The dashed line represents the ascending imidazole gradient from 0 to 500 mM. The numbers at the bottom indicate the fraction numbers collected. The photograph of the Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel superimposed above the second peak illustrates sample applied to the column (lane 1), fraction 20 (lane 2), fraction 21 (lane 3), and fraction 22 (lane 4). A penicillin-binding assay was used to verify that the protein band indicated by arrow was CP-PBP2a-27r.

centered on fraction 21 (Fig. 3). In this example, a small quantity of approximately 95% pure CP-PBP2a-27r was obtained in a single pass over the Zn(II) IMAC column. Penicillin-binding assays once again confirmed that this protein retained its penicillin-binding activity.

Purification by use of CP-IMAC technology is an attractive alternative to conventional purification schemes. Many proteins containing chelating peptides have been purified to homogeneity in a single step by CP-IMAC (10). In this example, we purified a protein with a molecular mass of roughly 74 kDa (12), illustrating that the small chelating peptide used efficiently immobilized a rather large protein. CP-IMAC technology provided a viable alternative for rapid purification of this medically important protein.

REFERENCES