Translational Autoregulation of the sgm Gene from Micromonospora zionensis

MILORAD KOJIC, LJUBISA TOPISIROVIC, AND BRANKA VASILJEVIC*
Institute of Molecular Genetics and Genetic Engineering, 11001 Belgrade, Yugoslavia

Received 1 February 1996/Accepted 17 July 1996

The sismicin-gentamicin resistance methylase gene (sgm) from Micromonospora zionensis (the producer of antibiotic G-52 [6-N-methyl-sisomicin]) encodes an enzyme that modifies 16S rRNA and thereby confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides. Here, we report that this gene is regulated on the translational level. The Escherichia coli lacZ gene and operon fusion system was used, and it was shown that an extra copy of the sgm gene decreases the activity of the fusion protein. These results suggested that expression of the sgm gene is regulated by the translational autorepression because of binding of the methylase to its own mRNA. It was shown by computer analysis that the same hexanucleotide (CCGCCG) is present 14 bp before the ribosome-binding site and in the C-1400 region of 16S rRNA, i.e., the region in which most of the aminoglycosides act. A deletion that removes the hexanucleotide before the gene fusion is not prone to negative autoregulation. This mode of regulation of the sgm gene ensures that enough methylase molecules protect the cell from the action of its own antibiotic. On the other hand, if all of the ribosomes are modified, Sgm methylase binds to its own mRNA in an autorepressive manner.

 Members of the order Actinomycetales are capable of producing a large number and wide variety of medically useful secondary metabolites. Among the actinomycetes, special attention has been paid to the genus Streptomyces, and the genetics and biochemistry of several antibiotic pathways have been extensively studied (for a list, see reference 6). On the other hand, the genetics of Micromonospora species has been far less studied. Thus far, cloning of several antibiotic resistance genes from Micromonospora species has been reported elsewhere (15, 21, 22, 25, 32, 33, 35). Concerning antibiotic biosynthetic genes, only the cloning of genes for fortimicin A biosynthesis has been reported (10, 11). Genetic analyses of antibiotic-producing organisms have revealed that, in most cases, the genes for resistance to antibiotics are clustered with their corresponding biosynthetic genes and, in some cases, with regulatory genes (for an example, see reference 20). This may indicate that expression of genes conferring resistance and biosynthetic genes are correlated, ensuring that resistance is always operational when the organism is exposed to its own toxic product.

The actinomycete Micromonospora zionensis produces antibiotic G-52 (6-N-methyl-sisomicin). This strain, like many other aminoglycoside-producing Micromonospora strains, protects itself against its own product by modification of the target site, i.e., ribosomes (29). An aminoglycoside resistance determinant (the sgm gene) from M. zionensis has been cloned in Streptomyces lividans, and it has been shown that the mechanism of resistance involves methylation of the 30S ribosomal subunit (25). Transcriptional analysis of the sgm gene in S. lividans, as well as in M. zionensis, revealed that this gene is transcribed from tandem promoters (24, 25). The promoter region of the sgm gene differs from that known for Streptomyces or Micromonospora (2, 36, 41). It has been shown that in Micromonospora species, tandem, temporally regulated promoters are utilized by different RNA polymerase holoenzymes (28), as previously discovered in Streptomyces species (5, 45).

Concerning regulation of resistance genes in antibiotic-producing actinomycetes, three different models have been described (for a review, see reference 7). The first model describes a complex regulatory cascade for biosynthetic genes in streptomyacin-producing Streptomyces griseus. The model includes the positive A-factor signal which is transferred to strR, a regulatory gene in the streptomyacin biosynthetic cluster. The resistance gene aphD is transcribed mainly by read-through from the A-factor-dependent strR promoter (20). A second regulatory mechanism is based on translational attenuation of MLS (macrolide, lincosamide, and streptogramin) resistance genes, and it has been shown that it operates in various Streptomyces strains. However, it has recently been shown that the tylosin producer Streptomyces fradiae exerts regulation of the hel1 resistance gene via transcriptional attenuation (23). The third mechanism of regulation of antibiotic resistance genes in actinomycetes is demonstrated in Streptomyces sphearoideas, a producer of novobiocin. The resistance gene from this organism is driven by a promoter which responds to the superhelical density of DNA (42). In addition to these well-documented examples, it has been proposed that kgmB gene of Streptomyces tenebrarius might be down-regulated by translational autoregulation (19).

In this paper, we present data that support the existence of an autoregulatory mechanism operating, at least in Escherichia coli, at the translational level of sgm gene expression.

MATERIALS AND METHODS

Bacterial strains and culture conditions. Strain E. coli NM522 [supE thi Δ(hsdM52-merB) Δ(lac-proAB) F' proAB' lacF' ΔlacZM15] was used (16). Luria broth was used as a rich medium and contained 15 g of agar liter⁻¹ when it was used as a solid medium (30). Antibiotics and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) were added at standard concentrations for screening of various fusions. Cells were grown in MMA glucose medium (30) supplemented with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) when they were assayed for β-galactosidase.

Recombinant DNA techniques. Bacterial transformations, plasmid preparations, ligations, restriction enzyme digestions, and gel electrophoresis were performed according to the method described by Sambrook et al. (37). The restriction enzymes were obtained from Bethesda Research Laboratories (Bethesda,
both fragments, Bam binding site [RBS] and N-terminal region) and the 3′ Bgl fragment containing the pSX1 plasmid, were treated with Klenow polymerase in order to obtain in-frame promoter of the kan gene. Furthermore, the kan fragment of pUC4K was partially digested pF1. Furthermore, the Sgm gene was inserted in the XhoI site of pOF2.

RESULTS

The Sgm protein is not detectable in *E. coli* cells.

The *sgm* gene (from *M. zonensis*) and the *grm* gene (from *Micromonospora purpurea*) (22) show significant similarity in their coding regions, while the upstream untranslated parts of the two genes differ in length and sequence. We tried to express both genes in an *E. coli* minicell system, in which both genes are expressed from the lacZ promoter. Surprisingly, while the *grm* protein was detected on sodium dodecyl sulfate-polyacrylamide gels, the Sgm methylase was not detectable (data not shown), despite the fact that *E. coli* cells containing the construct were gentamicin resistant. Since both genes are expressed from the same promoter, we assumed that variance in upstream, untranslated regions is responsible for differential expression of these genes. Our inability to detect the Sgm protein in gentamicin-resistant *E. coli* cells was possibly due to posttranscriptional regulation, which also indicated that a relatively low concentration of methylase molecules is sufficient for establishment of the gentamicin-resistance phenotype.

Translational control of Sgm synthesis.

These results suggested that regulation of the *sgm* gene was dependent on coding sequences present only in the noncoding region of this gene. This prompted us to construct gene and operon fusions using lacZ as the reporter gene. The *sgm-lacZ* gene fusion on pF1 is expressed from the strong inducible promoter P_{T'}, which is under control of the lacZ promoter. This fusion contains 395 nucleotides of the *sgm* gene, i.e., the first 61 codons, which are preceded by the RBS and the lacZ promoter.

TABLE 1. Plasmids constructed in this study

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSX1</td>
<td>sgm gene cloned at the XhoI site of pP_{T'}t7G</td>
</tr>
<tr>
<td>pF1</td>
<td>sgm-lacZ gene fusion constructed in the BglII site of pP_{T'}t7G</td>
</tr>
<tr>
<td>pF2</td>
<td>sgm gene cloned at the SalI site of pF1</td>
</tr>
<tr>
<td>pF3</td>
<td>sgm gene inactivated in the XhoI site of pF2</td>
</tr>
<tr>
<td>pFK1</td>
<td>kan gene inserted in the EcoRI site of pF1</td>
</tr>
<tr>
<td>pFK2</td>
<td>sgm gene cloned at the XhoI site of pFK1</td>
</tr>
<tr>
<td>pFK3</td>
<td>sgm gene inactivated in the XhoI site of pFK2</td>
</tr>
<tr>
<td>pSOF1</td>
<td>lacZ gene cloned in the BglII site of the pSX1 operon fusion</td>
</tr>
<tr>
<td>pSOF2</td>
<td>sgm gene cloned at the XhoI site of pSOF1</td>
</tr>
<tr>
<td>pOF1</td>
<td>lacZ gene cloned at the BglII site of pP_{T'}t7G</td>
</tr>
<tr>
<td>pOF2</td>
<td>sgm gene cloned at the XhoI site of the pOF1- operon fusion</td>
</tr>
<tr>
<td>pOF3</td>
<td>sgm gene inactivated in the XhoI site of pOF2</td>
</tr>
<tr>
<td>pAR1</td>
<td>Deletion created in the sgm-lacZ gene fusion and constructed analogously to pFK1</td>
</tr>
<tr>
<td>pAR2</td>
<td>sgm gene cloned at the XhoI site of pAR1</td>
</tr>
<tr>
<td>pAR3</td>
<td>sgm gene inactivated in the XhoI site of pAR2</td>
</tr>
<tr>
<td>pTK1</td>
<td>sgm-lacZ gene fusion containing only 10 codons of the sgm gene</td>
</tr>
<tr>
<td>pTK2</td>
<td>sgm gene cloned at the XhoI site of pTK1</td>
</tr>
</tbody>
</table>

See text for details.

Downloaded from http://jb.asm.org on July 9, 2017 by guest
fore, we conclude that active Sgm methylase somehow controls expression of the *sgm* gene.

The operon fusion included the same part of the *sgm* gene as that in a gene fusion; however, it expressed a full-length *lacZ* gene with its own translational initiation signals (plasmid pSOF1). The expression of β-galactosidase from pSOF1 was compared with the expression of this enzyme from plasmid pSOF2, which contained an additional copy of the *sgm* gene driven by the same *P*~T~ promoter. Surprisingly, β-galactosidase activity was twofold higher when it was expressed from a plasmid that contained the *sgm* gene before *lacZ* (Fig. 2A). This could be explained by higher mRNA stability. To avoid this problem, two additional plasmids, pOF1 and pOF2, were constructed. Plasmid pOF1 contained the complete *lacZ* gene expressed from the *P*~T~ promoter, while in plasmid pOF2, the operon fusion included the entire *sgm* gene as well as the *lacZ* gene which contained its own RBS and translational start codon (Fig. 2B). As a control in this experiment, plasmid pOF3 was used. In this plasmid, the *sgm* gene was inactivated, and it could be used as a control since it had been shown previously that the inactivated gene has no effect on protein fusion. As shown in Fig. 2B, there is no difference in the β-galactosidase activities in extracts from those two cell types, indicating that expression of *lacZ* from the operon fusion was unaffected by Sgm methylase. Thus, we conclude that Sgm methylase specifically represses the translation of its own message.

FIG. 2. Analysis of *sgm-lacZ* operon fusions. (A) The β-galactosidase activity of the strain carrying plasmid pSOF1 was taken as 100%. (B) The operon fusion on plasmid pOF2 was compared to the operon fusion carrying an inactivated copy of the *sgm* gene. Symbols used are as described in the legend to Fig. 1.

To test whether the *sgm* gene product represses translation, we used plasmid pFK2, which contained the *sgm* gene expressed from the *kan* promoter (Fig. 3A). In this way, the *sgm-lacZ* fusion and the *sgm* gene, both of which were present on the same plasmid, were in the same copy number. Measurement of β-galactosidase activities confirmed that Sgm methylase reduces the amount of fusion protein. The residual activity of the fusion protein is approximately 28%, which is a much higher level than the level when the *sgm* gene was expressed from the same promoter as the *sgm-lacZ* fusion (5%). However, this level of repression is high enough to conclude that the product of the *sgm* gene is responsible for autoregulation.

FIG. 3. Repression of the *sgm-lacZ* gene fusion by Sgm methylase. (A) Influence of Sgm methylase expressed from different transcriptional units. The activity of the fusion represented on plasmid pFK1 was taken as a control. (B) Effect of the *sgm* gene on the *sgm-lacZ* gene fusion constructed without the supposed regulatory region (circle before the *sgm* gene). The β-galactosidase activity of pΔRK1 was used as a control. All symbols are the same as those described in the legend to Fig. 1. Hatched box, the *kan* gene.
Sequencerequiredfortranslationalautoregulation.

To localize the **cis**-acting regulatory element(s) responsible for **sgm** autoregulation more precisely, two regions were taken into consideration. The first one includes sequences present within the **sgm** mRNA leader in which there exists a hexanucleotide sequence (CCGCCC) close to the putative RBS of the **sgm** gene (Fig. 4B). An identical sequence is also found in the 16S rRNA region in which most aminoglycoside resistance methylases act. A further **sgm-lacZ** fusion which contained the same 61 codons of the **sgm** gene preceded by its own RBS was

FIG. 4. Secondary-structure models of the 3′ end of 16S rRNA and the 5′ end of **sgm** mRNA. (A) Part of the recently refined secondary structure of the 3′ end of *E. coli* 16S rRNA with proposed tertiary interactions (9). The sites of action of antibiotic resistance methylase mutations giving resistance to antibiotics are from reference 8. Nucleotides identical to those found in the **sgm** mRNA are shaded. (B) Secondary structure of the 5′ end of the **sgm** mRNA derived from computer-aided RNA folding analysis. The hexanucleotide involved in autoregulation is shown in the shaded box. The RBS and translation initiation codon are underlined. Two possible secondary structures downstream of the RBS are indicated by arrows. The positions of *MnlI* and *TaqI* cleavage sites in the corresponding DNA fragments are indicated. These sites were used for construction of different gene fusions.
constructed; however, the CCGCCC hexanucleotide in the leader mRNA sequences was deleted (plasmid pARK1). The results of these experiments are outlined in Fig. 3B, and as can be seen, there is no significant difference in β-galactosidase activities between strains carrying only the mutated fusion and strains harboring an additional copy of the sgm gene (whether active or inactivated).

Although these results indicated the involvement of the first region in autoregulation, we also tested a second possible regulatory region. This region includes downstream sequences (within the coding region of the sgm gene) and consists of two alternative hairpin structures (Fig. 4B). New gene fusions were constructed by exploiting the Tauįl site such that the new fusion contained only 10 codons of the sgm gene before the β-galactosidase gene. With such constructs, the same level of repression was obtained as that with plasmid pTF2 (data not shown). Therefore, it is most likely that the sequences within a coding region of the sgm gene are not involved in autoregulation. This result, in conjunction with the results obtained with the fusion lacking mRNA leader sequences, indicates that the CCGCCC hexanucleotide before the RBS sequence might be required for translational repression.

DISCUSSION

Our interest in regulation of the sgm gene derives from the fact that we have been unable to detect Sgm protein synthesis in *E. coli* gentamicin-resistant cells. In the case of ribosome-modifying enzymes, such as Sgm methylase, expression of the resistance gene should not necessarily be maximized to achieve a higher level of resistance. It is anticipated that relatively few enzyme molecules are sufficient for complete modification of the target (i.e., RNA) (7). Therefore, it is clear that a negative autoregulatory system could be involved in maintenance of a constant and also very low concentration of the Sgm protein. This low concentration is evidently sufficient for establishment of the gentamicin-resistance phenotype. Although repression could in principle be accomplished at the level of transcription, we consider this very unlikely the mechanism by which the sgm gene is controlled in *E. coli*. Two independent facts support such a consideration. First, expression of the sgm gene in a heterologous system, such as *E. coli*, is dependent on the host transcriptional signals. Consequently, we consider it highly questionable that a transcriptional regulatory system that is capable of acting upon such evolutionarily diverse promoter sequences is present in two different bacteria. Second, the Sgm protein can repress the activity of β-galactosidase only in the gene fusions but cannot repress lacZ in the operon fusions.

Many components of protein synthesizing machinery are autoregulated at the translational level, such as S1 (34), S4 (17, 18), S10 (14), S15 (3), and L11 (1) ribosomal proteins and also aminoacyl tRNA synthetase (40). Among posttranscriptionally autoregulated genes are those coding for RNA methylases. The *ermC* gene confers resistance to erythromycin in gram-positive bacteria, and in addition to translational attenuation, this gene is autoregulated (4, 13). In addition, the *ksgA* gene, a 16S rRNA-modifying enzyme, is autoregulated at the level of translation (43). The autoregulatory mechanisms in these examples are based on similarity between the mRNA (in sequence or secondary structure) and the target site of the respective protein. Therefore, we searched the sgm mRNA sequence for regions that might display such similarity with 16S rRNA. Unfortunately, the precise site of action of the sgm gene product in 16S rRNA is not known; however, the search could be reduced to the region of 16S rRNA where many aminoglycoside antibiotics exert their action. It has been shown that gentamicin strongly protects A-1408 and G-1449, while residues A-1394, A-1413, and G-1487 are protected only weakly against chemical attack in the presence of gentamicin (31). Computer analysis revealed that the same hexanucleotide (CCGCCC) is present 14 bp before the sgm RBS and in the C-1400 region of 16S rRNA. This hexanucleotide might be involved in the formation of a specific hairpin structure in the sgm mRNA. However, obvious structural similarities between 16S rRNA and the sgm mRNA leader sequences were not found (Fig. 4). This suggested that the Sgm methylase recognizes primarily the same sequence within 16S rRNA and its own mRNA. Currently, we are undertaking more-detailed studies to determine the role of sequence and hairpin structure (i.e., site-directed mutagenesis and changing of the distance between the regulatory sequence and the RBS).

It is interesting that the sgm gene from the closely related *M. purpurea* has a completely different mechanism of regulation. Apart from lacking regulation at the level of translation, the *sgm* gene is transcribed from only one promoter close to the putative translational start site, and it is thus devoid of longer mRNA leader sequence. On the other hand, the sgm gene is transcribed from two promoters with different strengths (24). In this respect, it is tempting to speculate that development of an additional level of regulation (i.e., autogenous repression at the translational level) was useful on energetic grounds. Since few copies of methylase can protect an antibiotic-producing organism, unnecessary translation of this protein is prevented by binding to its own mRNA especially under conditions in which a stronger promoter is active.

ACKNOWLEDGMENTS

This work was supported by MSTRS (grant no. 1407). We gratefully acknowledge D. J. Holmes for critical review of the manuscript and for valuable comments.

REFERENCES

13. Denoya, C. D., D. H. Bechhofer, and D. Dubnau. 1986. Translational autoregulation of *ermC* 23S rRNA methyltransferase expression in *Bacillus sub-

24. Kojic, M. Unpublished data.

