Structural Studies of Malate Dehydrogenases (MDHs): MDHs in Brevundimonas Species Are the First Reported MDHs in Proteobacteria Which Resemble Lactate Dehydrogenases in Primary Structure

COLIN CHARNOCK*

Department of Microbiology, Institute of Pharmacy, University of Oslo, Blindern, 0316 Oslo, Norway

Received 31 December 1996/Accepted 14 April 1997

The N-terminal sequences of malate dehydrogenases from 10 bacterial strains, representing seven genera of Proteobacteria, were determined. Of these, the enzyme sequences of species classified in the genus Brevundimonas clearly resembled those malate dehydrogenases with greatest similarity to lactate dehydrogenases. Additional evidence from subunit molecular weights, peptide mapping, and enzyme mobilities suggested that malate dehydrogenases from species of the genus Brevundimonas were structurally distinct from others in the study.

NAD-dependent l-malate dehydrogenase (l-malate-NAD-oxidoreductase, EC 1.1.1.37) (l-MDH) is an integral enzyme in several metabolic processes, including the tricarboxylic acid and glyoxylate cycles. In higher organisms, l-MDH isoenzymes are found in mitochondria, peroxisomes, and chloroplasts (NADP-dependent enzyme), in addition to the cytosol. The reaction catalyzed is the reversible oxidation of l-malate to oxaloacetate with NAD as the H acceptor. Although the oxidation of l-malate is in the usual physiological direction, in Chlorobium spp., these are obligate phototrophs, the reaction proceeds in the opposite direction as part of the reductive tricarboxylic cycle which fixes CO₂ (7).

A stretch of glycine (G) residues has been implicated in the binding of NAD by most dehydrogenases with a requirement for this coenzyme (33). Three Gs lie separated as follows: GXGXXG, where X is any residue. This motif is, however, absent from the majority of l-MDHs investigated. It has been found only in l-MDHs from four eubacterial phototrophs, representing three phyla (2, 19, 25, 30), and in two species of Bacillus (13, 38). Complete gene sequences are available for these l-MDHs (13, 19, 30, 38), all of which show greater similarity in primary structure to l-lactate dehydrogenases (l-LDHs) than to other l-MDHs. This similarity includes the possession of the putative NAD-binding configuration GXGXXG by both dehydrogenases. Using data derived from empirical methods of protein sequence analysis and existing X-ray crystallography data, we have previously proposed an alternative G motif from that employed by most l-MDHs, i.e., GXAXGXXG/A, where A is alanine (2). l-MDH shares many structural and catalytic features with l-LDH which are suggestive of a common ancestry (1, 10, 17). The existence of l-MDHs which most resemble l-LDHs in primary structure, and their distribution in the bacterial phyla, may offer clues about the ancestral links between these two classes of dehydrogenase enzymes. The NAD-binding motif of l-MDHs is located close to the N terminus. Consequently, sequencing of this region of the enzyme provides data of particular value for comparing l-MDHs with each other and with l-LDHs. Relatively few sequences have been determined for species of Proteobacteria (16, 26, 32), and to date, all those investigated possess the GXAXGXXG/A motif.

Isolation of l-MDH from select Proteobacteria. Two liters of Luria broth were seeded with two to three bacterial colonies (strains used in the study are listed in Table 1), and cultures were grown at 32°C with shaking (150 rpm). Cells were harvested in the late log phase of growth, washed twice with 10 mM potassium phosphate buffer (pH 7.5) (buffer), and resuspended in 10 ml of buffer. Cell suspensions were disrupted, on ice, by sonication (three 1-min bursts) with intermittent cooling. Thereafter, intact cells and cell debris were removed with a short preliminary centrifugation. The supernatant was ultracentrifuged (200,000 × g for 90 min) at 4°C in a Beckman 18-55M ultracentrifuge fitted with an SW-50.1 rotor. The resulting clear supernatant was the cell-free extract (CFE). l-MDH activity was measured as the reaction in the direction of oxaloacetate reduction by monitoring the oxidation of NADH at A₄₅₀ (2). An open glass column (inner diameter, 5 mm) containing approximately 1 ml of DiaMatrex gel Red-A (Amicon, Inc., Beverly, Mass.) was equilibrated with washing with 20 ml of buffer at 4°C. CFE was added dropwise to the column and allowed to run through under gravity. The eluate was collected and reapplied a total of three times. Unbound protein was removed from the column, as determined by the A₂₈₀ of the emerging liquid, after the gel was washed with 30 ml of buffer. l-MDH was specifically eluted by the following protocol. The gel bed was first allowed to drain (sufficient buffer is retained in the column to prevent damage), after which the outlet valve was closed. One milliliter of 5 mM NAD and 10 mM l-malate in buffer was mixed carefully into the gel, and elution was allowed to proceed for 2 min, whereupon the outlet was reopened and the l-MDH-containing sample was collected. The process was repeated twice to maximize recovery. Enough enzyme was obtained by this approach for several microsequencing reactions. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that preparations obtained after affinity chromatography contained l-MDH in a highly concentrated and relatively pure form. Electrophoresis typically gave an intense band of l-MDH and a number of much fainter bands well separated...
TABLE 1. Bacterial strains

<table>
<thead>
<tr>
<th>Species (Proteobacteria subclass)</th>
<th>Taxonomic status</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (gamma)</td>
<td>Laboratory strain</td>
<td>Origin unknown</td>
</tr>
<tr>
<td>K. pneumoniae (gamma)</td>
<td>Laboratory strain</td>
<td>Obtained as culture contaminant</td>
</tr>
<tr>
<td>S. maltophilia (alpha)</td>
<td>Type strain</td>
<td>21</td>
</tr>
<tr>
<td>Brevundimonas diminuta (alpha)</td>
<td>Type strain</td>
<td>27</td>
</tr>
<tr>
<td>Brevundimonas vesicularis (alpha)</td>
<td>Type strain</td>
<td>27</td>
</tr>
<tr>
<td>Burkholderia pseudomallei (beta)</td>
<td>Type strain</td>
<td>39</td>
</tr>
<tr>
<td>Burkholderia cepacia (beta)</td>
<td>Type strain</td>
<td>39</td>
</tr>
<tr>
<td>V. indigofera (beta)</td>
<td>Type strain</td>
<td>11</td>
</tr>
<tr>
<td>C. acuivorus (beta)</td>
<td>Type strain</td>
<td>31</td>
</tr>
<tr>
<td>A. delafildii (beta)</td>
<td>Clinical isolate,</td>
<td>Human joint</td>
</tr>
<tr>
<td></td>
<td>CCUG 12929</td>
<td>aspirate (34)</td>
</tr>
<tr>
<td>Acidovorax facilis (beta)</td>
<td>Type strain</td>
<td>40</td>
</tr>
<tr>
<td>Ralstonia solanacearum (beta)</td>
<td>Type strain</td>
<td>39</td>
</tr>
<tr>
<td>Burkholderia carophylii (beta)</td>
<td>Type strain</td>
<td>39</td>
</tr>
<tr>
<td>A. xylosoxidans subsp. xyllosidans</td>
<td>Type strain</td>
<td>4, 14</td>
</tr>
<tr>
<td>P. alcaligenes (gamma)</td>
<td>Type strain</td>
<td>12, 18</td>
</tr>
</tbody>
</table>

* Based on 16S rRNA cataloging described in references 33–35.
* Strains for which the N-terminal sequence of L-MDH was determined.
* Identity confirmed with the api 20E identification system for Enterobacteriaceae (Bio Mérieux).
* CCUG; Culture Collection of the University of Gothenburg.

from that of L-MDH (results not shown). The L-MDH subunit was recognizable by its position in the gel. All L-MDHs examined to date are composed of identical subunits with molecular masses between 30 and 38 kDa (2). L-LDH activity was not detected in the enzyme preparations. Subunit sizes varied from 33 to 37 kDa for the 10 strains examined (Fig. 1). The subunits from Brevundimonas vesicularis and Brevundimonas diminuta subunits were of equal size and were the smallest in the study. The largest subunit was that of Burkholderia cepacia.

Microsequencing of membrane-immobilized L-MDH. L-MDHs were Western blotted from SDS-PAGE gels onto Immobilon-P polyvinylidene difluoride membranes (Millipore Corporation Ltd., Bedford, United Kingdom) and stained and destained according to the protocols of the manufacturer. The N-terminal sequence of membrane-bound protein was determined in an Edman degradation reaction (6) by using an Applied Biosystems protein sequencer (model 477A) fitted to a 120A analyzer. An amount of enzyme between 10 and 100 pmol (≈ 0.35 to 3.5 μg) was sufficient for a single analysis. Only a single N terminus was detected for each enzyme, which is consistent with a high degree of purity (Fig. 1). Eight of the 10 strains examined possessed an L-MDH with an N terminus which had features typical of the majority of these enzymes. In addition to the NAD-binding motif, GAXGXXG/A, several other residues were common to all sequences (Fig. 1). By contrast, L-MDHs from Brevundimonas species were most similar to those L-MDHs which resemble L-LDHs in primary structure. These sequences contain a GXGXXG motif and also have a number of other residues which are absolutely conserved. However, the residues which are conserved in this class of L-MDHs are distinct from those conserved in L-MDHs of the majority class (Fig. 1). A further difference between the two L-MDH sequence classes was seen in their subunit molecular masses (Fig. 1). Subunits from L-MDHs which resemble L-LDHs show remarkably little variation in size and are smaller than those from the majority of other L-MDHs.

L-MDH sequences for the two species from the Enterobacteriaceae family that were analyzed were identical and showed no differences from the sequence reported for Escherichia coli (32). Identical sequences were seen among the respective species from the genera Burkholderia and Brevundimonas. Comamonas acidovorans and Acidovorax delafeldii were grouped together based on their level of rRNA homology, as measured by the competition technique in rRNA-DNA hybridization experiments (20). L-MDHs from these two species had identical sequences. Some agreement between the enzyme sequences and the taxonomic placement of individual strains of the Proteobacteria was thus obtained. Regarding the above discussions on L-MDH sequence classes, it is noteworthy that the genus Brevundimonas is located in the alpha subclass of the Proteobacteria (35), whereas the other genera examined belong to the beta (36) or gamma (37) subclasses (Table 1). As more L-MDH sequences become available, it will be interesting to see if any convincing relationship between the distribution of L-MDH types and the subclasses of the Proteobacteria emerges.

Peptide mapping and starch gel electrophoresis (SGE). The N-terminal sequences and subunit molecular weights of L-MDHs from the two species of Brevundimonas were identical, and they were different from those of the other strains of Proteobacteria. Peptide mapping and enzyme mobility studies were performed in order to obtain more data for purposes of comparison.

Following SDS-PAGE, gels were stained briefly (Coomassie) and destained, and the band corresponding to the L-MDH subunit was excised with a scalpel. Gel slices (containing about 5 μg of protein) were equilibrated by gentle shaking (2× for 1 h each) in 10 ml of equilibration buffer (125 mM Tris-HCl [pH 6.8], 0.1% SDS, 10 mM Na₂EDTA [pH 7.0]). Partial digestion with V8 protease (catalog no. P-2922, Sigma) and electrophoretic separation of generated peptides were performed as previously described (9) with the following specifications. A total of 0.075 μg of protease was used per 5 μg of L-MDH. Electrophoresis was performed at a constant current of 10 mA until the tracking dye had reached the interface with the separating gel. The power was then shut off for 30 min, allowing digestion to proceed, and the run was subsequently completed at 20 mA. Mapping gels were stained with silver nitrate (24). Peptide maps of L-MDHs from Proteobacteria generated by limited digestion with V8 protease are shown in Fig. 2. Structurally related enzymes would be expected to give similar maps. L-MDHs from the two Brevundimonas species had several peptides in common, suggestive of substantial similarity between the whole enzyme. L-MDHs from Stenotrophomonas maltophilia, Burkholderia pseudomallei, and C. aci

Identity confirmed with the api 20E identification system for Enterobacteriaceae (Bio Mérieux).
CCUG; Culture Collection of the University of Gothenburg.
were harvested in the late log phase of growth, and CFE was prepared by sonication exactly as described previously (3). Preparation of horizontal starch gels (9 by 190 by 210 mm), electrophoresis, and staining for L-MDH activity followed standard procedures for SGE (28). A Tris-citrate buffer system (buffer B in reference 28) was found to be the most applicable for achieving a good focus of L-MDHs in the gel. In brief, electrophoresis was performed at a constant 150 V at room temperature. Following electrophoresis, horizontal 1- to 2-mm slices were cut with a thin wire and incubated at 32°C in enzyme-staining solution. L-MDH activity in the gel appeared as strong, almost black, bands against a white background. As a larger set of Proteobacteria was tested than that for which purified L-MDH was available, CFE was used for all strains as a standardizing measure. A sample gel is shown in Fig. 3. (The order in which the 13 native L-MDHs migrated, based on the results of many gels, is given in the accompanying figure legend.) With the exception of the S. maltophilia enzyme, L-MDHs representative of the majority class of these enzymes remained in the lower half of the gel (slow migratory enzymes). By contrast, L-MDHs from Brevundimonas diminuta and Brevundimonas vesicularis were the first and fourth, respectively, most rapidly migrating enzymes and travelled considerably further in the gel than most other L-MDHs. The SGE analyses showed that the combinations of charge and size for L-MDHs from species of the genus Brevundimonas were significantly different than those of the majority of other Proteobacteria tested. A thin band of activity was obtained for extracts of Pseudomonas alcaligenes (Fig. 2, lane 8). P. alcaligenes is a member of what is now generally recognized to be the authentic genus Pseudomonas, synonymous with the rRNA similarity group I of Palleroni et al. (20), and belongs in the gamma
subdivision of the Proteobacteria (37). Unlike the Enterobacteriaceae and S. maltophilia, which also belong in the gamma subdivision, it is doubtful that the authentic Pseudomonas spp. possess an NAD-dependent L-MDH (8, 23, 29). I did not find, using a spectrophotometric assay, NAD-dependent L-MDH activity in extracts from any members of rRNA homology group I. A thin, atypical single band was obtained for all authentic Pseudomonas spp. by using SGE. The band mobility was species dependent, though little variation in mobility was found (unpublished data). The phenomenon has not been investigated further. There are also several other reports of activity staining of NAD-linked L-MDH for authentic Pseudomonas spp. (3, 5, 15). It is possible that phenazine methosulfate (used in the staining procedure) can act as an electron acceptor in the oxidation of L-malate under the experimental conditions. The appropriate electron acceptor and the cofactor requirements have been shown to depend upon the degree of purification of a membrane-associated enzyme from Pseudomonas ovalis Chester (23). To check that the L-MDH activity detected in CFE of those strains from which the enzyme was sequenced was not an artifact, the SGE analyses were repeated with the enzyme preparations from affinity chromatography. For each preparation, a single band of L-MDH activity was demonstrated, and the order of migration of the enzymes in the gel was the same as that obtained by using CFE.

These analyses more than double the number of L-MDH N-terminal sequences reported for species of genera belonging to the Proteobacteria. L-MDHs from members of the genus Brevundimonas probably belong to a group of these enzymes which most resemble L-LDHs in primary structure. This study brings to five the number of genera of eubacteria for which these L-MDHs have been documented, and it is the first report of their existence in the Proteobacteria. The distribution of L-MDH sequence classes and their evolutionary relationships with L-LDHs are clearly complex. For example, L-MDH from the archaebacterium Haloarcula marismortui (1), although most resembling L-LDHs and their sequence-similar L-MDHs in primary structure (1, 10, 13, 19, 30), has the NAD-binding motif of the majority class of L-MDHs. A meaningful interpretation of the ancestral links of these dehydrogenase enzymes will require more sequence data.

Sequence accession numbers. Sequence accession numbers for the L-MDH sequences have been allocated as follows (SWISS-PROT protein sequence database): E. coli, P06994; Klebsiella pneumoniae, P80535; Burkholderia pseudomallei, P80536; Burkholderia cepacia, P80537; Vogesella indigofora, P80538; C. acidovorans, P80539; A. delafeldii, P80540; S. maltophilia, P80542; Burkholderia pseudomallei, P80543; and Brevundimonas vesicularis, P80545.

I thank Knut Sletten and Jessie Juul for determination of the L-MDH protein sequences.

REFERENCES

