Identification and Characterization of Genes Encoding Carbazole 1,9a-Dioxygenase in Pseudomonas sp. Strain CA10

SHIN-ICHI SATO, JEONG-WON NAM, KANO KASUGA, HIDEAKI NOJIRI, HISAKAZU YAMANE, AND TOSHIO OMORI*

Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan

Received 13 January 1997/Accepted 16 May 1997

Nucleotide sequence analysis of the flanking regions of the carBC genes of Pseudomonas sp. strain CA10 revealed that there were two open reading frames (ORFs) ORF4 and ORF5, in the upstream region of carBC. Similarly, three ORFs, ORF6 to ORF8, were found in the downstream region of carBC. The deduced amino acid sequences of ORF6 and ORF8 showed homologies with ferredoxin and ferredoxin reductase components of bacterial multicomponent dioxygenase systems, respectively. ORF4 and ORF5 had the same sequence and were tandemly linked. Their deduced amino acid sequences showed about 30% homology with large (α) subunits of other terminal oxygenase components. Functional analysis using resting cells harboring the deleted plasmids revealed that the products of ORF4 and -5, ORF6, and ORF8 were terminal dioxygenase, ferredoxin, and ferredoxin reductase, respectively, of carbazole 1,9a-dioxygenase (CARDO), which attacks the angular position adjacent to the nitrogen atom of carbazole, and that the product of ORF7 is not indispensable for CARDO activity. Based on the results, ORF4, ORF5, ORF6, and ORF8 were designated carAa, carAc, carAc, and carAd, respectively. The products of carAa, carAd, and ORF7 were shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be polypeptides with molecular masses of 43, 36, and 11 kDa, respectively. However, the product of carAc was not detected in Escherichia coli. CARDO has the ability to oxidize a wide variety of polyaromatic compounds, including dibenzop-dioxin, dibenzofuran, biphenyl, and polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. Since 2,2',3-trihydroxydiphenyl ether and 2,2',3-trihydroxybiphenyl were identified as metabolites of dibenzop-dioxin and dibenzofuran, respectively, it was considered that CARDO attacked at the angular position adjacent to the oxygen atom of dibenzop-dioxin and dibenzofuran in the case with carbazole.

Microbial degradation of xenobiotics such as polycyclic aromatic hydrocarbons, heterocyclic polyaromatics, and halogenated aromatics and aliphatics is quite useful to detoxify and mineralize these pollutants and thus is an important goal of research related to bioremediation. Among these pollutants, polychlorinated dibenzo-p-dioxin (DD), dibenzofuran (DBF), and carbazole (CAR) are well known to possess strong mutagenic and toxic activities (2) and also to be recalcitrant molecules (7). A critical point in the degradative pathways of these compounds is the initial oxidation of the chemically stable aromatic ring. In the aerobic degradation of many aromatic compounds, the multicomponent aromatic ring dioxygenases are very important enzyme complexes, consisting of two or three protein components (17, 28). Multicomponent dioxygenases catalyze a redox reaction in which molecular oxygen atoms are incorporated into the aromatic ring at the expense of the oxidation of NAD(P)H (17, 28). The recalcitrance of these xenobiotic compounds is considered to be due to requirement of rare and unique aromatic ring oxygenases for degradation.

Some bacterial and fungal strains which are able to degrade DD and DBF have been reported (8, 12, 18, 42). Recently, a dioxygenase that attacks at the angular position adjacent to the hetero atom of DD and DBF was purified from Sphingomonas sp. strain RW1 (5). However, its nucleotide sequence was not reported. On the other hand, almost no information has been obtained on the genes involved in the degradation of CAR, although several CAR-utilizing bacteria have been isolated (13, 14, 20, 24, 31).

Previously, we isolated Pseudomonas sp. strain CA10 from a sample of activated sludge as a microorganism with the ability to utilize CAR as a sole source of carbon, nitrogen, and energy (31). As shown in Fig. 1, the degradation pathway of CAR in strain CA10 was proposed on the basis of identification of the metabolic intermediates of CAR and comparison with the degradative pathways of other aromatic compounds such as biphenyl and naphthalene. The dioxygenase of strain CA10 is considered to attack at the angular position adjacent to the nitrogen atom to give the dihydroxylated intermediate. This unstable intermediate is considered to be spontaneously converted to 2'-aminobiphenyl-2,3-diol. To clone the genes encoding this angular dioxygenase, carbazole 1,9a-dioxygenase (CARDO), we attempted to clone a DNA fragment containing the meta-cleavage enzyme gene and the adjacent regions, because the genes encoding the enzymes which catalyze the initial oxidation of aromatic compounds and the subsequent meta-cleavage and hydrolysis of the meta-cleavage compound are often clustered.

In the accompanying paper (34), we reported the cloning of the genes encoding meta-cleavage enzyme (carB) and hydrolase (carC), which are involved in CAR degradation of strain CA10. In this report, we describe the identification and characterization of the genes encoding CARDO, which were found to be present in the adjacent regions of carB and carC. We also report that CARDO has the ability to oxidize a wide variety of polyaromatic compounds, including DD and DBF.
VOL. 179, 1997

PSEUDOMONAS SP. STRAIN CA10 GENES ENCODING CARDO 4851

MATERIALS AND METHODS

Bacterial strains, plasmids, media, and culture conditions. Plasmids used in this study are depicted in Fig. 2. Escherichia coli JM109 (40) was used as the host strain for the plasmids constructed in this study. E. coli strains were grown on 2xYT medium (33) at 37°C. Ampicillin and chloramphenicol at final concentrations of 50 and 30 μg/ml, respectively, were used for liquid cultures and selection on agar plates. For plate cultures, the above-described media solidified with 1.6% agar. E. coli strains were grown on 2xYT medium (33) at 37°C. Ampicillin and chloramphenicol at final concentrations of 50 and 30 μg/ml, respectively, were used for liquid cultures and selection on agar plates. For plate cultures, the above-described media solidified with 1.6% agar.

DNA manipulation. Plasmid DNA was prepared from the E. coli host strain by the alkaline lysis method (4). Restriction endonucleases, T4 DNA ligase, and a DNA blunting kit (Taka Shuzo Co. Ltd., Kyoto, Japan) were used according to the manufacturer’s instructions. DNA fragments were extracted by the glass powder method (GeneClean II kit; Bio 101 Inc., La Jolla, Calif.) as instructed by the manufacturer. Other DNA manipulation was performed according to standard methods (33).

Nucleotide sequence determination, alignment, and phylogenetic analysis. Unidirectional deletion mutants were constructed by using a kilo-sequence DNA deletion kit (Takara Shuzo Co. Ltd., Kyoto, Japan). Nucleotide sequence determination was carried out as described previously (34). The obtained nucleotide sequences were analyzed with DNASIS-Mac software (version 3.6; Hitachi Software Engineering Co., Ltd., Yokohama, Japan). Alignment of the sequences of CarAs with other large (a) subunits was performed with the CLUSTAL W package (39). Phylogenetic analysis was performed by using the neighbor-joining algorithm of PHYLIP (version 3.5c; obtained from J. Felsenstein, University of Washington) as described previously (34).

Resting cell reaction. Resting cells of E. coli strains were prepared as described previously (34). We used minimal medium (31) for washing and resuspension of strain CA10 cells. Strain CA10 cells were grown on 2xYT medium supplemented with carbazole at a final concentration of 0.1% (wt/vol) at 30°C. The cells were washed and resuspended as described for recombinant E. coli cells. The metabolite was extracted and analyzed by analytical TLC as described above.

Analytical methods. GC-MS analysis was carried out as described previously (34). The TLC method was performed on 0.25-mm-thick, precoated silica gel plates containing a fluorescence indicator (Merek, Darmstadt, Germany) and developed with the solvent system toluene-dioxane-acetic acid (90:25:4, by volume). For the isolation of the metabolites of DD and DBF, preparative TLC was carried out as follows. The sample was developed on precoated silica gel plate (1 mm thick; Merck) with the solvent system hexane-ethyl acetate-acetic acid (10:10:1, by volume). The desired band was scraped off and eluted with H2O-saturated ethyl acetate. The resultant elute was loaded onto a silica gel column before evaporation and used for other analytical experiments. The 1H nuclear magnetic resonance (NMR) spectra were determined with a JEOL JNM-A500 spectrometer (JEOL, Tokyo, Japan) operated at 500 MHz, using tetramethylsilane as an internal standard. Mass spectra were obtained with a model M-2000 spectrometer (Hitachi, Ltd., Tokyo, Japan) equipped with a direct inlet system. The electron accelerating voltage was 70 eV.

SDS-PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed by the method of Laemmli (26), using 15% polyacrylamide gels. After the electrophoresis, protein staining of the gels was performed with Coomassie brilliant blue R-250.

Chemicals. CAR was purchased from Katayama Chemical Industries Co. Ltd., Osaka, Japan. Although this carbazole was of the highest purity commercially available, recrystallization from ethanol was done for further purification. DD was synthesized by the method described by Harms et al. (18). All other chemicals were of the highest purity commercially available.

Nucleotide sequence accession number. The nucleotide sequence data for the insert DNA fragment of pUC1A were available from the DDBJ, EMBL, and GenBank nucleotide sequence databases under accession no. D89064.

FIG. 1. Degradation pathway of carbazole in Pseudomonas sp. strain CA10. Gene designations: carA, carbazole 1,9a-dioxygenase; carB, 2’-aminobiphenyl-2,3-diol 1,2-dioxygenase; carC, 2-hydroxy-6-oxo-6-(2’-aminophenyl)-hexa-2,4-dienoic acid (meta-cleavage compound) hydrolase; carD, 2-hydroxypent-2,4-dienoic acid hydratase; carE, 4-hydroxy-2-oxoalate aldolase; carF, acetaldelyde dehydrogenase (acylating). Compounds: I, carbazole; II, 2’-aminobiphenyl-2,3-diol; III, 2-hydroxy-6-oxo-6-(2’-aminophenyl)-hexa-2,4-dienoic acid (meta-cleavage compound); IV, anthranilic acid; V, catechol; VI, cis,cis-muconic acid; VII, 2-hydroxypent-2,4-dienoic acid; VIII, 4-hydroxy-2-oxoaleric acid; IX, acetaldelyde; X, pyruvic acid; XI, acetyl coenzyme A. TCA, tricarboxylic acid.

Downloaded from http://jb.asm.org/ on September 30, 2017 by guest.
RESULTS

Detection of CARDO activity. We observed that *E. coli* harboring pUCA1 (Fig. 2) (34) which contained *carBC* and the adjacent regions had the ability to form indigo on 2xYT plates. This phenomenon was reported for naphthalene dioxygenase (10) and cumene dioxygenase (1, 9), suggesting that pUCA1 contains genes encoding CARDO. Therefore, we assayed for conversion of CAR in the resting cell reaction using *E. coli* JM109 harboring pUCA1. The ethyl acetate extract of the reaction mixture was subjected to GC-MS analysis after methylation with ethereal diazomethane, with the result that the retention time and full-scan mass spectrum of the methylated derivative of the product were consistent with those of authentic anthranilic acid methyl ester (data not shown). In this analysis, we could not detect other intermediates such as 2-aminobiphenyl-2,3-diol and 2-hydroxy-6-oxo-6-(2-aminophenyl)hexa-2,4-dienoic acid.

Nucleotide sequence analysis. Since in the companion paper (34) we reported the nucleotide sequence of the 2.6-kb *Sma*I-*Sph*I fragment (Fig. 2) in which *carB* and *carC* gene were located, we determined the nucleotide sequences of the 2.6-kb *Eco*RI-*Sma*I fragment and the 2.7-kb *Sph*I-*Eco*RI fragment, which were the upstream and downstream regions, respectively, of the 2.6-kb *Sma*I-*Sph*I fragment. We identified an additional five ORFs (ORF4 to ORF8) by computer analysis as shown in Fig. 2 and 3. The Shine-Dalgarno (SD) sequence (35) was found in the upstream region of the putative initiation codon of each ORF. Surprisingly, the nucleotide sequences of ORF4 and ORF5 were identical, and the 89-bp-long 5’ upstream sequence of ORF4 was the same as that of ORF5 except for one base. Similarly, the 22-bp-long 3’ downstream sequence of ORF4 was the same as that of ORF5. The 3’ and 5’ termini of other putative ORFs were also found in the upstream region of ORF4 and downstream region of ORF8, respectively.

Functional analysis of ORFs. To determine the functions of the ORFs, we performed homology searches and the following experiments.

(i) ORF6. The nucleotide sequence of ORF6 showed 58.0, 57.1, and 57.1% homologies with the ferredoxin components of chlorobenzene dioxygenase (41), biphenyl dioxygenase (27), and toluene dioxygenase (43), respectively. The consensus sequence of Rieske-type iron-sulfur proteins for the binding of a [2Fe-2S] cluster (32) was also found in ORF6. Since these results suggest that ORF6 encodes the ferredoxin component of CARDO, ORF6 was designated *carAc*.

(ii) ORF8. ORF8 showed 53.0 and 49.3% homologies with ferredoxin reductase components of toluene 3-monooxygenase (6) and naphthalene dioxygenase (25), respectively. The consensus sequence of plant-type iron-sulfur proteins for the binding of a [2Fe-2S] cluster (30) was located at a position close to the N-terminus of the deduced amino acid sequence of ORF8. The consensus sequence previously proposed to be involved in the binding of flavin adenine dinucleotide (FAD) and NAD (29) was also found in the C terminus of the deduced amino acid sequence of ORF8. These observations suggest that ORF8 encodes the ferredoxin reductase component of CARDO, and thus ORF8 was designated *carAd*.

(iii) ORF4, -5, and -7. ORF4 and ORF5 had identical sequences and were tandemly linked (Fig. 3A), and the deduced amino acid sequence showed about 30% homologies with large subunits of other terminal oxygenase components. The consensus sequence of Rieske-type iron-sulfur proteins for the binding of a [2Fe-2S] cluster (CXHX_{16-17}CXXXH) (32) was

![Diagram of physical map of the 6.9-kb *Eco*RI insert of pUCA1 and of the different cloned DNA fragments described in this study. The boxes in the physical map indicate the sizes and locations of the ORFs derived from the DNA sequence analysis. Only restriction sites of relevant enzymes are shown. The location and orientation of the *lac* promoter of the pUC119 and pSTV29 vectors are indicated by arrows. The dotted line for the pUCARA insert indicates the deleted DNA fragment. Restriction site designations: *E*, *Eco*RI; *D*, *Dde*I; *Sm*, *Sma*I; *Xh*, *Xho*I; *Bg*, *Bgl*II; *Sp*, *Sph*I; *K*, *Kpn*I; *H*, *Hind*III; *P*, *Pst*I; *Sc*, *Sac*II.](http://jb.asm.org/ on September 30, 2017 by guest)
FIG. 3. (A) Nucleotide and deduced amino acid sequences of the EcoRI-XhoI fragment of pUCA15 encoding ORF4 and ORF5. The sense DNA strand is shown. The putative SD sequences (35) are underlined. Asterisks indicate stop codons. The amino acids conserved in the Rieske-type [2Fe-2S] cluster binding site (32) are indicated by shaded boxes. The conserved amino acids, which are considered to act as a mononuclear iron ligand at the site of oxygen activation (22), are indicated by reverse type. The double underline indicates the putative NAD(P)-ribose binding region.

(B) Nucleotide and deduced amino acid sequences of the BglII-EcoRI fragment of pUCA14 encoding ORF6 to ORF8. The sense DNA strand is shown. The putative SD sequences are single underlined. Asterisks indicate stop codons. The amino acids conserved in the Rieske-type and plant type [2Fe-2S] cluster binding site (30, 32) are indicated by shaded boxes. The conserved amino acids, which are considered to act as an FAD-isoalloxazine ring binding site (29), are indicated by reverse type.
found in ORF4 and ORF5, as shown in Fig. 4A. The critical motif GX3–4DXX4–5H, which was considered to act as a mononuclear iron ligand at the site of oxygen activation (22), was also conserved in ORF4 and ORF5 (Fig. 4B). These results suggested the possibility that ORF4 and ORF5 encode the large subunit of the terminal oxygenase component of CARDO. To confirm this possibility, two deletion mutants were constructed. In resting cell reactions using the deletion mutants, the D1.3-kb EcoRI-SmaI mutant (pUCA111 [Fig. 2]), in which only ORF4 was deleted, could metabolize CAR to anthranilic acid. On the other hand, in the reaction mixture using resting cells of the D2.6-kb EcoRI-SmaI mutant (pUCA12 [Fig. 2]), in which both ORF4 and ORF5 were deleted, CAR was not metabolized at all (data not shown). These results indicated that the protein encoded by ORF4 and ORF5 is indispensable for the expression of CARDO activity and supported the possibility that ORF4 and ORF5 encode the subunit of the terminal oxygenase component of CARDO.

Comparison among the amino acid sequences of small subunits of catalytic terminal oxygenases of various bacterial dioxygenase systems revealed that their phylogenetic relationships are similar to those found for large subunits, but with lower degrees of homology (3). No significant homology of ORF7 with other degradative genes was observed, but there was a possibility that ORF7 encodes a small subunit of the terminal oxygenase component. To examine this possibility, the following experiment was conducted. A 2.3-kb BglII-EcoRI fragment carrying ORF6 to ORF8 was inserted into pSTV29, the resultant plasmid being designated pSCA14. Frameshift mutation in ORF7 was introduced in pSCA14 at the XhoI site by XhoI digestion, blunting the ends with T4 DNA polymerase, and ligation at the blunt-ended XhoI restriction site, the resultant plasmid being designated pSCA14X. We also constructed a plasmid in which the 3.2-kb EcoRI-XhoI fragment carrying ORF4 and ORF5 was inserted into pUC119, and it was named pUCA15 (Fig. 2). The mixture of pUCA15 and pSCA14 or that of pUCA15 and pSCA14X was introduced into E. coli JM109, and the CARDO activities of the recombinant E. coli cells were assayed by the resting cell reactions. As the result of GC-MS analysis, the same metabolite, 2′-aminobiphenyl-2,3-diol, was identified in both reaction mixtures (data not shown). No difference was observed in the yield of 2′-aminobiphenyl-2,3-diol between the clones having an

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Rf valuea</th>
<th>Substrate remaining (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbazole</td>
<td>0.74</td>
<td>0.56</td>
</tr>
<tr>
<td>Dibenzoferon</td>
<td>0.92</td>
<td>0.38</td>
</tr>
<tr>
<td>Dibenzotheniophene</td>
<td>0.86</td>
<td>0.52</td>
</tr>
<tr>
<td>Fluorene</td>
<td>0.93</td>
<td>0.81, 0.68</td>
</tr>
<tr>
<td>A-N-Methylcarbazole</td>
<td>0.92</td>
<td>0.37</td>
</tr>
<tr>
<td>A-N-Ethylcarbazole</td>
<td>0.92</td>
<td>0.38</td>
</tr>
<tr>
<td>Dibenz-p-dioxin</td>
<td>0.94</td>
<td>0.42</td>
</tr>
<tr>
<td>Phenazine</td>
<td>0.70</td>
<td>NDc</td>
</tr>
<tr>
<td>Phenoxazine</td>
<td>0.75</td>
<td>0.56</td>
</tr>
<tr>
<td>Phenothiazine</td>
<td>0.80</td>
<td>0.56</td>
</tr>
<tr>
<td>Phenothiain</td>
<td>0.92</td>
<td>0.41</td>
</tr>
<tr>
<td>Bipheny</td>
<td>0.95</td>
<td>0.43</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.93</td>
<td>0.37</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.90</td>
<td>0.68, 0.42</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.92</td>
<td>0.70, 0.44</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.89</td>
<td>0.73, 0.44</td>
</tr>
</tbody>
</table>

a Analytical TLC was developed with the solvent system toluene-dioxane-acetic acid (90:25:4, by volume).

b ND, not detected.

c NT, not tested.
term ORF7 and frameshift mutation-introduced ORF7. These results suggest that ORF7 is not indispensable to the CARDO activity and that the presence of ORF4 (or ORF5) with ferredoxin and ferredoxin reductase components is essential for the expression of CARDO activity. Thus, we concluded that ORF7 does not encode the small subunit of the terminal dioxygenase component of CARDO and that CarAa acts as a subunit of terminal oxygenase of CARDO; that is, this terminal oxygenase component consists of a single subunit. Thus, both ORF4 and ORF5 were designated carAa.

Substrate specificity of CARDO. To analyze the substrate specificity of CARDO, we constructed a recombinant plasmid which encoded carAaAcAd but did not encode the carBaBb and carC. The plasmid vector pUC119 was digested with restriction endonuclease PstI and blunt-ended with T4 DNA polymerase, and the resultant linear DNA fragment was self-ligated. The 6.9-kb EcoRI insert of pUC1A1 was reinserted into this pUC119 derivative. The resultant plasmid was digested with PstI and BglII, and the ends of the resultant DNA fragment were blunt-ended. The blunt-ended restriction sites were ligated, and the resultant plasmid was designated pUCARA.

By means of a resting cell reaction using *E. coli* JM109 harboring pUCARA, the conversion of other aromatic compounds by CARDO was investigated. The resultant products were analyzed by TLC. *E. coli* JM109 harboring pUC119 was used as a control. The *Rf* values of the aromatic compounds tested in this study were determined (Table 1). *E. coli* JM109 harboring pUCARA could oxidize many aromatic compounds but not phenazine. The *Rf* values of all of the products were lower than those of the corresponding substrates, suggesting that all substrates were oxidized. Thus, CARDO was found to have a broad substrate range. In the case of DD, DBF, phenazine, phenothiazine, and xanthene, the detected metabolites clearly turned brown on TLC plates in a few days, suggesting the possibility that the metabolites were easily oxidized with air. The mass spectrum of the product from DD revealed a molecular ion peak at *m/z* 218 (M+ 76) and prominent fragment ion peaks at *m/z* 199 (M+ 59, 5), 171 (M+ 47, 11), 125 (M+ 90, 13), 110 (M+ 108, 74), and 94 (M+ 124, 100). 1H NMR data (500 MHz, CD3OD/C6D6 = 100/15, by volume; tetramethylsilane as an internal standard) were as follows: δ = 6.35 (H-4, J4,5 = 8.0 Hz, J5,6 = 2.0 Hz), 6.60 (H-5, J5,6 = 8.0 Hz), 6.63 (H-6), 6.74 (H-5), J5,6 = 7.5 Hz), 6.82 (H-6), 6.93 (H-4, J4,5 = 8.0 Hz, J5,6 = 1.5 Hz), and 6.96 (H-3, J3,4 = 1.5 Hz) ppm. Since these data were identical with those reported by Wittich et al. (42), it was determined that DD was converted to 2,2′,3-trihydroxydiphenyl ether by CARDO. This result indicates that DD was dihydroxylated by CARDO at the angular and adjacent carbon atoms and that the dihydroxylated intermediate was spontaneously converted to 2,2′,3-trihydroxydiphenyl ether. The mass spectrum of the product from DBF revealed a molecular ion peak at *m/z* 202 (M+ 100), and prominent fragment ion peaks at *m/z* 174 (M+ 28, 15), 149 (M+ 53, 22), 131 (M+ 71, 17), 115 (M+ 87, 20), and 91 (M+ 111, 18). Since this mass fragmentation pattern was identical to that reported by Fortnagel et al. (12), this product from DBF was determined to be 2,2′,3-trihydroxybiphenyl. This result indicates that CARDO is also able to attack at the angular and its adjacent carbon atoms of DBF as is the case for DD.

Detection of the products of *carAa, carAc, carAd*, and ORF7. To confirm if the ORFs could be translated to proteins with the predicted sizes in *E. coli*, the cellular proteins from the recombinant *E. coli* cells harboring plasmids encoding the respective genes were loaded onto an SDS–15% polyacrylamide gel (Fig. 5). Expression of ORF4 encoded in a 1.3-kb *DdeI* insert of pUC1A12 yielded a peptide with a molecular mass of 43 kDa, which corresponds to the predicted molecular mass of the *carAa* gene product (lane 3). Expression of ORF5 encoded in a 2.0-kb *DdeI* insert of pUC1A13 also yielded the 43-kDa protein (data not shown). In a similar analysis of the *BglII*-EcoRI insert of pUC1A14 encoding carAc, carAd, and ORF7, two proteins of 11 and 36 kDa were detected (lane 4). The 36-kDa protein was also expressed in the clone containing the *XhoI*-EcoRI insert of pUC1A14 encoding carAaAcAd (lane 5). Since the calculated molecular masses of the product of ORF7 and CarAc are similar (11,366 and 11,551 Da, respectively), it remains to be clarified whether the 11-kDa protein is the product from ORF7, *carAa*, or a mixture of both. However, an 11-kDa protein was also expressed in the clone containing the 0.7-kb *SphI* insert of pUC1A14 encoding ORF7 (lane 7), and the 11-kDa protein corresponding to CarAc was not detected in the clone containing the *BglII*-XhoI insert of pUC1A14 (lane 5). These results suggested that the band corresponding to the 11-kDa protein in lanes 2 and 4 was mostly due to the gene product of ORF7. The 6.6-kDa protein in lane 5 is considered to be the N-terminal region of the product of ORF7.

DISCUSSION

In this study, we cloned the genes encoding CARDO, a member of a growing number of known bacterial enzymes that oxidize aromatic compounds. CARDO is a multicomponent enzyme system similar to naphthalene dioxygenases (36) and toluene dioxygenases (43). However, CARDO is a unique dioxygenase that attacks at the angular position adjacent to the nitrogen atom in CAR. Though the purification of the dibenzofuran 4,4a-dioxygenase which degrades DD and DBF has been reported (5), the nucleotide sequence of the genes encoding this dioxygenase system was not reported. This is the first paper reporting the cloning of the genes encoding dioxygenase that attacks at the angular position adjacent to the hetero atoms in heterocyclic aromatic compounds. It should also be noted that the nucleotide and deduced amino acid sequences of CarAa are unique and that the homologies with previously known dioxygenases were only 27 to 30%.

The gene organization of *car* gene cluster has been revealed to be *carAaAaAcAcAd* (ORF7)*Ad*, as shown in Fig. 2. In other bacteria, the components of dioxygenase such as *bph* (27, 37), *cum* (1), and *nah* (36) are tandemly linked, although the gene orders of the respective components are varied. The gene encoding the ferredoxin reductase component in the biphenyl
dioxygenase in *Pseudomonas* sp. strain KKS102 is separated by a 3.5-kb DNA fragment from genes encoding the other components (23). The genes encoding the terminal oxygenase component (CarAa) of CARDO are also separated from the genes encoding the ferredoxin component (CarAc) and ferredoxin reductase component (CarAd) by a 2-kb DNA fragment encoding a meta-cleavage enzyme (CarB) and meta-cleavage compound hydrolase (CarC). The gene organization of the *car* gene cluster suggests the possibility that gene rearrangements also occurred in the *car* gene cluster through the evolutionary divergence in the natural environment as suggested by Werlen et al. (41).

Since a homology search of DNA sequence databases showed that the 5′ terminus of the putative ORF located in the downstream region of the *carAd* gene is similar to the DNA sequence that encodes 2-hydroxypenta-2,4-dienoate hydratase of *Pseudomonas* sp. strain LB400 (21), this putative ORF is tentatively designated *carD*. On the basis of the gene organi-
zation in other degradative gene clusters (15, 21), it is quite possible that the genes involved in the meta-cleavage pathway (carD, carE, and carF) are encoded in the downstream region of carAd. On the other hand, the 3’ terminus of the putative ORF was found in the upstream region of carAa, but no significant homology was observed. To clarify the whole structure of car gene cluster, further gene walking is now under way.

It was revealed that the 1,263-bp DNA region containing the carAa gene was tandemly duplicated except for one base and that there were only three bases (GGC) between these tandemly linked DNA regions, as shown in Fig. 3. Such a gene structure has not been observed in other degradative gene clusters. Because CarAa was highly expressed in the recombinant E. coli cells harboring pUCA1 (duplicated carAa genes) or pUCA111 (single carAa gene), no significant difference in CARDO activity was observed between these clones. The significance of this duplication of carAa genes in strain CA10 cells remains to be clarified.

Expression of genes encoded in the EcoRI insert of pUCARA yielded 43-, 36-, and 11-kDa proteins, which are considered to correspond to carAa, carAd, and ORF7 gene products, respectively (Fig. 5, lane 2). As for CarAc, we could not clearly detect the gene product in E. coli harboring pUCA14 and pUCA141 (Fig. 5, lanes 2, 4, and 5, respectively). This might be due to weak expression as in the case of the bphA3 gene product in Pseudomonas pseudocaldgenes KF707 (37). The component of benzene dioxygenase of P. putida ML2 has intracellular α subunit of iron-sulfur protein/ferredoxin reductase molar ratio of 1:0.45:0.8, suggesting that the multicomponent dioxygenase is an enzyme complex with a rather loose association between the oxygenase component, ferredoxin, and ferredoxin reductase (38). Although the expression level of CarAc in recombinant E. coli was low, the amount of CarAc expressed in E. coli might be sufficient to transport electrons to the terminal component, or CarAc might be more highly expressed in strain CA10 and able to transport electrons efficiently.

The terminal oxygenase components of bacterial aromatic ring dioxygenase systems reported previously consist of one or two subunits. The terminal oxygenase components of biphenyl dioxygenase (27, 37), naphthalene dioxygenase (36), and toluene dioxygenase (43) were reported to consist of large and small subunits. The recombinant E. coli cells harboring the plasmid encoding carAa, carAc, ORF7, and carAd had CARDO activity. The frameshift mutation in ORF7 did not affect the CARDO activity; therefore, ORF7 is not considered to be involved in the expression of CARDO activity. CarAc and CarAd were found to be ferredoxin and ferredoxin reductase components by homology search and alignment analyses. Based on the foregoing data, the terminal oxygenase component of CARDO was determined to consist of a single subunit (CarAa). The phylogenetic tree of the large (α) subunits of terminal oxygenases showed that CARDO was an evolutionarily novel dioxygenase (Fig. 6). The aromatic ring dioxygenases were classified into three classes in terms of the number of constituent components and the nature of the redox centers (28). Class I consists of two-component enzymes in which the first protein is a reductase containing both a flavin and a [2Fe-2S] redox center, and the second component is the terminal oxygenase; class II consists of three-component enzymes in which the flavin and [2Fe-2S] redox centers of the reductase are on the separate flavoprotein and ferredoxin, respectively; and class III consists of three-component enzymes in which the reductase contains both a flavin and a [2Fe-2S] redox center but also requires a second [2Fe-2S] center on a ferredoxin for electron transfer to the terminal oxygenase. Further subdivision is based on the type of flavin (flavin mononucleotide or FAD) in the reductase, the coordination of the [2Fe-2S] center in the ferredoxin, and the number of terminal oxygenase subunits. The consensus sequence of Rieske-type iron-sulfur proteins for the binding of a [2Fe-2S] cluster was found in the deduced amino acid sequences of the terminal oxygenase subunits (CarAa) and ferredoxin (CarAc) of CARDO (Fig. 3 and 4A). The ferredoxin reductase (CarAd) of CARDO possesses the consensus sequence of the plant-type iron-sulfur proteins for the binding of a [2Fe-2S] cluster and the putative FAD- and NAS-binding site (Fig. 3B). From the conserved deduced amino acid sequence, CARDO seems to have a class III electron transport chain like that of naphthalene dioxygenase (36). It has been reported that naphthalene dioxygenase consists of three components, ferredoxin reductase, ferredoxin, and terminal oxygenase, consisting of large and small subunits (36). Because the terminal dioxygenase of CARDO consists of a single subunit, it is considered that CARDO constitutes a new subfamily in this class III dioxygenase family.

In this study, it was shown that CARDO attacked at the angular position adjacent to the hetero atom of heterocyclic aromatic compounds such as CAR, DD, and DBF. This type of dioxygenation was followed by the spontaneous cleavage of the bond between the hetero atom and the adjacent angular position. It was also shown that CARDO had the ability to metabolize biphenyl and polycyclic aromatic hydrocarbons, such as naphthalene, phenanthrene. Identification of the products from these various types of aromatic compounds by CARDO will provide information on the manner of dioxygenation catalyzed by this novel dioxygenase.

Although strain CA10 did not grow on DD, DBF, fluorene, or naphthalene (31), resting cells of strain CA10 were able to convert these compounds (data not shown). However, the ability of the recombinant E. coli harboring pUCARA to convert these compounds was much higher than that of strain CA10 (data not shown). Because DD and DBF were converted by CARDO to biphenyl and diphenyl ether derivatives which are easily degraded by many bacteria, the transformants harboring pUCARA were useful tools for remediation of DD and DBF in a closed system. In a preliminary experiment, CARDO could degrade polychlorinated dibenzo-p-dioxin (data not shown). Therefore, it is considered possible to remediate sites contaminated with this compound and/or polychlorinated dibenzo furan by using this recombinant E. coli strain along with derivative metabolite-degrading microorganisms, such as polychlorinated biphenyl degraders. Considering that CARDO has broad substrate specificity, this recombinant E. coli could become a very useful tool for bioremediation of various aromatic compound-contaminated sites.

While the small subunits of terminal oxygenase have been implicated in substrate recognition (16), Erickson and Mondello (11) reported the large subunit of biphenyl dioxygenase to be responsible for the substrate specificity. The terminal oxygenase component of CARDO consists of a single subunit of CarAa protein, suggesting that the substrate recognition site is located in CarAa, which corresponds to the large subunits of other aromatic ring dioxygenases. Crystallization and determination of the three-dimensional structure of CarAa will provide valuable information on the substrate recognition site and the mechanism of dioxygenation at the angular positions adjacent to the hetero atoms in CAR, DD, DBF, and so on.

REFERENCES
1. Aoki, H., T. Kimura, H. Habe, H. Yamane, T. Kodama, and T. Omori. 1996. Cloning, nucleotide sequence, and characterization of the genes encoding enzymes involved in the degradation of cumene to 2-hydroxy-6-oxo-7-meth-

