A Bacillus subtilis Gene Encoding a Protein Similar to Nucleotide Sugar Transferases Influences Cell Shape and Viability

KIRSTEN D. PRICE, STEVEN ROELS, AND RICHARD LOSICK

Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, and Millennium Pharmaceuticals, Cambridge, Massachusetts 02139

Received 24 April 1997/Accepted 2 June 1997

Bacillus subtilis gene yp fp , which is located at 196° on the genetic map, shows similarity to both the mono-galactosyldiacylglycerol synthase gene of Cucumis sativus, which encodes a galactosyltransferase, and the murG genes of B. subtilis, Escherichia coli, Haemophilus influenzae, and Synechocystis sp. strain PCC6803, which encode N-acetylglucosaminyltransferases involved in peptidoglycan biosynthesis. Cells containing a null mutation of yp fp are shorter and rounder than wild-type cells during growth in Luria-Bertani medium and glucose minimal medium. In addition, the mutant cells preferentially undergo lysis when grown on solid Luria-Bertani medium.

The chloroplast membranes of higher plants and eukaryotic algae contain two major galactolipids, monogalactolipids, and digalactosyldiacylglycerol (MGDG). The final step in the synthesis of MGDG is catalyzed by MGDG synthase, a UDPgalactose:1,2-diacylglycerol 3-β-D-galactosyltransferase, which transfers galactose from UDPgalactose to 1,2-diacylglycerol (9). A sequence of an MGDG synthase from cucumber (Cucumis sativus) is known and was shown to be similar to those of the MurG peptidoglycan biosynthesis enzymes of Escherichia coli and Bacillus subtilis (17). The rigid peptidoglycan layer of the bacterial cell wall is composed of long glycan chains that are cross-linked through peptide side chains. The glycan chains are alternating copolymers of N-acetylgalactosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) that are held together by β1-3 glycosidic linkages. The chains are formed by polymerization of disaccharide units that are assembled on a lipid carrier molecule at the inner surface of the cytoplasmic membrane (11, 12, 18). Synthesis of the disaccharide is catalyzed by MurG, a UDP-N-acetylglucosamine:N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase, which transfers GlcNAc from the nucleotide sugar UDP-GlcNAc to undecaprenyl-phosphoryl-MurNAc-pentapeptide to form undecaprenyl-phosphoryl-MurNAc-(pentapeptide)GlcNAc (2, 14). Here we report that B. subtilis contains a gene, ypfp, that influences cell shape and viability, and whose inferred product resembles MGDG synthase of C. sativus and shows similarity to some conserved regions of MurG proteins.

ypfp, which is 382 codons in length, was previously identified by the B. subtilis sequencing project and lies between metB and cspD at 196° on the chromosome (3). Our searches against available sequence databases have revealed that the inferred amino acid sequence of YpfP is most similar to that of MGDG synthase of C. sativus. An alignment of these proteins shows they exhibit 24% identity overall and 37% identity in four regions involving 183 YpfP residues (Fig. 1). In confirmation and extension of the results obtained by Shimojima et al. (17), we found that YpfP, like MGDG synthase, contains regions of great similarity to some conserved regions of the MurG proteins of B. subtilis (1, 7, 15), Haemophilus influenzae (5), E. coli (8, 13, 19), and Synechocystis sp. strain PCC6803 (10) (Fig. 2). The similarity is most extensive in an approximately 50-amino-
acid region near the carboxyl terminus. The alignment shown in
Fig. 2 was used to generate a consensus sequence of 31 highly
conserved residues. The YpfP sequence is identical to that of the
consensus at 23 positions and contains a similar amino acid at 6 of
the remaining 8 positions. In general, the residues appearing in
the consensus sequence are those that are most highly conserved
among the MurG proteins in those regions (Fig. 2), suggesting
that these regions in MGDG synthase and YpfP are functionally
similar to those of the MurG proteins.

To investigate the function of ypfP, we replaced the entire
ypfP open reading frame with a gene conferring resistance to
kanamycin. To construct this mutant, ypfP, including flanking
sequences extending 200 bp upstream and 400 bp downstream
of the gene, was cloned following amplification by PCR. Next,
an NsiI-RsaI fragment encompassing the entire ypfP open reading frame was replaced with a kanamycin resistance cassette (6). The resulting plasmid was then used to replace ypfP in the *B. subtilis* chromosome with the kanamycin resistance gene via marker replacement recombination to generate strain KP261 (ypfPΔ::Km'). Loss of a spectinomycin resistance cassette present in the plasmid backbone during construction of this strain indicated that the plasmid had not integrated via single-crossover (Campbell-type) reciprocal recombination.

KP261 was able to form colonies on Luria-Bertani (LB) solid medium (16), but in contrast to its cognic parent, the mutant exhibited substantial lysis after about 36 h of growth at 37°C. Preferential lysis by the mutant was not observed on Tris Spizizen salts (TSS) solid medium (4), a glucose minimal medium, or in LB or TSS liquid media. In addition, in both types of liquid media the growth curves of the mutant and wild-type parent were similar (data not shown). On LB and TSS solid media and in LB and TSS liquid media, the mutant cells were shorter and rounder than those of the wild type. In both types of liquid media, this phenotype was visible as early as the exponential phase of growth (data not shown). In LB medium, however, the phenotype was less striking early during growth but became more pronounced the further the cells progressed into the stationary phase (Fig. 3). In another characterization, the mutant cells showed no measurable defect in their capacity to sporulate when tested on Difco sporulation medium (data not shown).

That the lysis and shape phenotypes were due to the absence of ypfP and not to a polar effect of the deletion/insertion mutation on the expression of a downstream gene was demonstrated by a complementation experiment. ypfP, including flanking sequences extending 375 bp upstream and 200 downstream of the open reading frame, was cloned into pDG364 (4), an amyE integration vector. We then introduced this plasmid into KP261 and isolated a transformant in which the plasmid-borne copy of ypfP had integrated at (and thereby inactivated) the *amyE* locus via double recombination. The genotype of the resulting strain, KP278 (ypfPΔ::Km' *amyE*::ypfP''), was verified by backcross experiments with the wild-type strain. KP278 behaved indistinguishably from the wild type with respect to lysis and cell shape (data not shown).

Because the ypfP deletion mutation affects cell shape, which is determined by the cell envelope, and, in keeping with its similarity to MGDG synthase and the MurG peptidoglycan biosynthesis enzymes, we propose that YpfP plays a role in cell envelope biosynthesis or maintenance. That MGDG synthase is 24% identical to YpfP is significant but not sufficiently so to indicate that both proteins have the same function. More noteworthy is that MGDG synthase and YpfP share regions of significant similarity with known MurG proteins. What could be the function of these domains? Both MGDG synthase and MurG catalyze the formation of a glycosidic bond between a sugar residue and a lipid-linked substrate. MGDG synthase transfers galactose from UDPgalactose to 1,2-diacylglycerol, whereas MurG transfers GlcNac from UDP-GlcNac to lipid-linked MurNac-pentapeptide. Perhaps the regions of similarity comprise binding sites for the nucleotide sugar substrates of these enzymes or the catalytic domain that is responsible for the glycosyltransferase activity. In any event, it seems possible that YpfP is a nucleotide sugar transferase and is involved in the synthesis or modification of a component of the cell envelope.

We thank A. Sorokin and D. Ehrlich for providing the DNA sequence prior to publication and C. Webb for critical reading of the manuscript.

This work was supported by a grant from the Eli Lilly Corporation and by NIH grant GM18568 to R.L.

REFERENCES


