Fatty Acid Biosynthesis in *Pseudomonas aeruginosa*: Cloning and Characterization of the *fabAB* Operon Encoding β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabA) and β-Ketoacyl-Acyl Carrier Protein Synthase I (FabB)

**TUNG T. HOANG AND HERBERT P. SCHWEIZER*
Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523**

Received 10 April 1997/Accepted 18 June 1997

The *Pseudomonas aeruginosa fabA* and *fabB* genes, encoding β-hydroxyacyl-acyl carrier protein dehydratase and β-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in *Escherichia coli*. Northern analysis demonstrated that *fabA* and *fabB* are cotranscribed and most probably form a *fabAB* operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from *Escherichia coli* and to the putative homologs from *Haemophilus influenzae*. Chromosomal *fabA* and *fabB* mutants were isolated; the mutants were auxotrophic for unsaturated fatty acids. A temperature-sensitive *fabA* mutant was obtained by site-directed mutagenesis of a single base that induced a G101D change; this mutant grew normally at 30°C but not at 42°C, unless the growth medium was supplemented with oleate. By physical and genetic mapping, the *fabAB* genes were localized between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map.

The fatty acid synthetase system of *Escherichia coli* is the archetype of a type II or dissociated fatty acid synthetase system, meaning that the individual reactions are catalyzed by separate proteins that are encoded by separate genes (for reviews, see references 2 and 21). The type II system is found in most bacteria and plants.

In *E. coli*, fatty acid biosynthesis can be separated into two stages, initiation and cyclic elongation (for a comprehensive review, see reference 2). Each round of elongation requires four chemical reactions (11). Three β-ketoacyl-acyl carrier protein (ACP) synthetases, KAS I (FabF), KAS II (FabF), and KAS III (FabH), which are the products of the *fabF*, *fabF*, and *fabH* genes, respectively, play pivotal roles in fatty acid synthesis. Initiation requires malonyl coenzyme A (CoA) and malonyl-ACP. Malonyl-CoA is synthesized by acetyl-CoA carboxylase, and malonyl-ACP is derived from malonyl-CoA and ACP by the action of malonyl-CoA:ACP transacylase, the product of the *fabD* gene. The first cycle of elongation is initiated by KAS III (FabH), which condenses malonyl-ACP with acetyl-CoA. Subsequent cycles are initiated by condensation of malonyl-ACP with acetyl-ACP, catalyzed by KAS I (FabB) and KAS III (FabF). In the second step, the resulting β-ketoester is reduced to a β-hydroxyacyl-ACP by a single, NADPH-dependent β-ketoacyl-ACP reductase (FabG). The third step in the cycle is catalyzed by either the *fabA*- or the *fabB*-encoded β-hydroxyacyl-ACP dehydratase. The fourth and final step in each cycle involves the conversion of *trans*-2-enoyl-ACP to acyl-ACP, a reaction catalyzed by a single NADH-dependent enoyl-ACP reductase (FabI).

FabA and FabB also play crucial roles in unsaturated fatty acid biosynthesis. FabA isomerizes *trans*-2-decenoyl-ACP to *cis*-3-decenoyl-ACP, which bypasses the FabI-catalyzed step, and is used by FabB for initiation of the first cycle of elongation of unsaturated fatty acid synthesis. The FabA dehydratase is a bifunctional enzyme, catalyzing reactions of dehydration and of double-bond isomerization on 10-carbon thiol esters of ACP at an unusual bifunctional active site at the interface of a symmetric dimer (18).

Although some steps can be catalyzed by multiple enzymes, each of the enzymes plays a distinct role in the pathway, which is probably reflective of different substrate specificities and/or physiological function. In case of the condensing enzymes, FabH seems to catalyze the initial condensation in the pathway, FabF is responsible for the temperature-dependent alterations in fatty acid composition (7), and FabB is required for the catalysis of a unique step in unsaturated fatty acid biosynthesis. Similarly, although FabA and FabZ function interchangeably in the cycles of fatty acid elongation up to 10 carbons, FabA is more active in the dehydration of β-hydroxydecanoyl-ACP and, unlike FabZ, is required for the formation of *cis*-3-decenoyl-ACP (11), a prerequisite for unsaturated fatty acid biosynthesis. Conversely, even though both FabA and FabZ function equally in the cycles leading to the formation of saturated fatty acid biosynthesis, FabZ is probably the primary dehydratase that participates in the elongation cycles of unsaturated fatty biosynthesis (11).

The *E. coli* structural genes for all of the enzymes described above have been cloned and sequenced. Whereas the *fabD*, *fabF*, *fabG*, and *fabH* genes are located within a cluster of fatty acid biosynthetic genes at 24.8 min on the *E. coli* map, the *fabA* (21.9 min), *fabB* (52.6 min), *fabI* (29.2 min) and *fabZ* (4.4 min) genes all lie at distant sites (2).

Until the present studies were initiated, there had been few reports about fatty acid synthesis, composition, and function in *Pseudomonas* spp. This is perhaps surprising given that many biologically important and even essential functions are dependent on fatty acid biosynthesis. These include (i) production of increased levels of the unsaturated fatty acids hexadecenoate and octadecenoate and reduced levels of the corresponding saturated fatty acids in response to lowering of the growth temperature (16); (ii) synthesis of the protein-bound coenzymes biotin and lipoic acid (3); and (iii) lipopolysaccharide, lipoprotein, and lipid biosynthesis (2). In many gram-negative
pathogenic bacteria, the same pathway is probably also required for the synthesis of the acylated homoserine lactones used to monitor cell density and to regulate many virulence factors by quorum sensing and response (8, 17, 25, 26). It has recently been shown that acylated homoserine lactones are required for the synthesis of the acylated homoserine lactones secreted by quorum sensing and response (8, 17, 25, 26).

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth media. The bacterial strains used in this study are listed in Table 1. Also listed in Table 1 are plasmids that are relevant to this study and are not described in the text. The details underlying the construction of pPS752 (see Fig. 1) are as follows. The 193-bp biotinylated chromosome fragment from pPS744 was used to identify a 4.8-kb chromosomal BamHI-EcoRI fragment by genomic Southern analysis. For cloning of this DNA fragment, BamHI-EcoRI-digested PAO1 chromosomal DNA was electro-phoresed on a 1% agarose gel in 0.5× Tris-borate-EDTA (TBE) and the fragments from the 4- to 5-kb region of the gel were eluted by the GeneClean procedure (Bio101, San Diego, Calif.). After ligation into BamHI-EcoRI-digested pUC18 (43), ampicillin-resistant (Ap′) DH5αF′ colonies were selected. Plasmid DNA was isolated and subjected to Southern analysis with the above described probe. A representative plasmid, designated pPS752, containing the cloned 4.8-kb BamHI-EcoRI fragment was retained for further studies. Luria-Bertani (LB) medium (29) was used as the rich medium for both *E. coli* and *P. aeruginosa*. M9 medium (29) and VBMM (31) were used as the minimal media for *P. aeruginosa*. The Fab phenotypes were assessed on LB medium (12). Fatty acids, neutralized with KOH, were added to RB medium at a final concentration of 0.1% and solubilized by the addition of Brij 58 to a final concentration of 0.1 to 0.2%. Antibiotics were used in selection media at the following concentrations: for *E. coli*, 100 μg of ampicillin per ml and 10 μg of gentamicin per ml; for *P. aeruginosa*, 500 μg of carbenicillin per ml, 200 μg of gentamicin per ml, and 200 μg of rifampin per ml.

DNA procedures. Restriction enzymes, calf intestinal phosphatase, T4 DNA polymerase, and T4 DNA ligase were used as recommended by the suppliers. DNA fragments were made blunt ended with T4 DNA polymerase in the presence of 100 μM deoxynucleoside triphosphates (29). Small-scale isolations of plasmid DNA from *E. coli* and *P. aeruginosa*, and DNA transformations were done as previously described (34). DNA restriction fragments were eluted from low-gelling-temperature agarose gels as described by Wieslander (41) for <500-bp fragments or by the GeneClean procedure for >500-bp fragments. For PCR amplification of a fabA fragment from chromosomal DNA, two oligonucleotides, P1 (5′-CC[C/G]GCG[C/G]CC[C/G]A[CC/C]CT[G/C][ATG]TGC[T/G]CACT) and P2 (5′-TAG AAG [CC/C][G]A[C/C][G]AGC TGC [CAC]CA) (marked in Fig. 2) were used to prime synthesis from PAO1 chromosomal DNA as previously described (13). The 193-bp PCR fragment was ligated to the pGem-T cloning vector, by the method provided by the supplier (Promega, Madison, Wis.), to form pPS744. For genomic Southern analysis, chromosomal PAO1 DNA was digested with various restriction endonucleases, electro-phoresed on a 1% agarose gel in 0.5× TBE, and transferred to Nylon gene membranes (Gibco BRL, Gaithersburg, Md.) as described by Sambrook et al. (29). Plasmid DNA was biotinylated by random hexamer priming by the NEBlot Phototype kit method (New England Biolabs, Beverly, Mass.). Following transfer and UV

TABLE 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant properties</th>
<th>Reference or origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAO1</td>
<td>Prototroph</td>
<td>B. H. Holloway</td>
</tr>
<tr>
<td>PAO2</td>
<td>ser-3</td>
<td>B. H. Holloway</td>
</tr>
<tr>
<td>PAO191</td>
<td>PAO1 with fabA:Gm′</td>
<td>This study</td>
</tr>
<tr>
<td>PAO192</td>
<td>PAO1 with fabB:Gm′</td>
<td>This study</td>
</tr>
<tr>
<td>PAO194</td>
<td>PAO1 with fabX(Ts)</td>
<td>This study</td>
</tr>
<tr>
<td>PAO716</td>
<td>cys−54 rif−96</td>
<td>B. H. Holloway</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5αF′</td>
<td>E. coli F′ompT, mK′</td>
<td></td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>E. coli B′ompTyn′mK′</td>
<td>36</td>
</tr>
<tr>
<td>CY50</td>
<td>F′ fabA2(Ts) his trp gal mtl rpsL</td>
<td>J. Cronan</td>
</tr>
<tr>
<td>CY274</td>
<td>fabB(Ts) arg pro Tc</td>
<td>J. Cronan</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Relevant properties</th>
<th>Reference or origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEM-T</td>
<td>Ap′; TA-cloning vector</td>
<td>Promega</td>
</tr>
<tr>
<td>pRO271</td>
<td>Cb′ Hg′ Cma′</td>
<td>24</td>
</tr>
<tr>
<td>pUC18</td>
<td>Ap′</td>
<td>43</td>
</tr>
<tr>
<td>pUCP20/21Ap′</td>
<td>broad-host-range cloning derivatives of pUC18/19</td>
<td>33</td>
</tr>
<tr>
<td>pUCP20/21TAp′</td>
<td>mobilizable derivatives of pUCP20/21</td>
<td>33</td>
</tr>
<tr>
<td>pPS744</td>
<td>Ap′; PCR-amplified 193-bp genomic segment from PAO1 cloned into pGEM-T</td>
<td>This study</td>
</tr>
<tr>
<td>pPS752</td>
<td>Ap′; orfS′ fabA′ fabB′ (4.8-kb chromosomal BamHI-EcoRI fragment cloned between the same sites of pUC18)</td>
<td>This study</td>
</tr>
<tr>
<td>pPS755</td>
<td>Ap′; fabB′ (2.348-bp PstI fragment from pPS752 cloned into the PstI site of pUC18)</td>
<td>This study</td>
</tr>
<tr>
<td>pPS750</td>
<td>Ap′; fabA′ fabB′ (ligation of 0.5-kb KpnI-SmaI fragment from pPS752 between the same sites of pPS755)</td>
<td>This study</td>
</tr>
<tr>
<td>pPS757</td>
<td>Ap′; fabA′ (deletion of the 1.86-kb SpI fragment from pPS770)</td>
<td>This study</td>
</tr>
<tr>
<td>pPS790</td>
<td>Ap′; fabA′ fabB′ (2.039-bp PCR-amplified BamHI-KpnI fragment from pPS752 between the same sites of pUC19)</td>
<td>This study</td>
</tr>
<tr>
<td>pPS823</td>
<td>Ap′; orfS′ fabA′ fabB′ (4.8-kb chromosomal BamHI-EcoRI fragment cloned between the same sites of pUC21T)</td>
<td>This study</td>
</tr>
</tbody>
</table>

Unless noted otherwise, the fab genes were in the same transcriptional orientation as the lac operon promoter.
fixation (29), the membranes were probed with the biotinylated DNA fragment as specified in the Phototype kit protocol. Sequences of double-stranded plasmid DNA templates were determined with the Taq FS ready reaction kit (Applied Biosystems, Foster City, Calif.) on a PTC-100 PCR system (MJ Research, Watertown, Mass.). Extensions were primered with the commercially available Eco nuclease (nt) PUCM13 reverse and forward sequencing primers, respectively. Labeled samples were analyzed on an ABI 377 PRISM sequencer at the Colorado State University Macromolecular Resource Facility. Both strands were entirely sequenced from plasmids obtained by deletion subcloning of restriction fragments into the pUC18/19 vectors (43). Sequences were analyzed with the MacDNAsis (Hitachi Software Engineering, San Bruno, Calif.), SeqEd (Applied Biosystems), and SeqVu (Garvan Medical Institute, Sydney, Australia) pro- gramming. Database homology searches were performed with the online BLAST facilities of the National Center for Biotechnology Information, National Library of Medicine (Bethesda, Md.).

RNA procedures. Total RNA was isolated from ~10^9 cells (1.5-ml exponentially growing cultures; absorbance at 540 nm, ~0.8 to 1.0) of P. aeruginosa PAO1, with the RNAeasy kit (Qiagen, Chatsworth, Calif.). For Northern analysis, 30 μg of total RNA was electrophoresed on a 1.2% agarose gel prepared in 2.2 M formaldehyde–20 mM 3-(N-morpholino)propanesulfonic acid (MOPS; pH 7)–8 mM sodium acetate–1 mM EDTA and submerged in the same buffer. The blots were processed and probed exactly as described above for the Southern blots, with a few modifications specified for RNA blots in the NEBlot Phototype kit protocol. The fabA- and fabB-specific probes were a 487-bp Pstl-Sphl fragment and a 2.3-kbp Sphl fragment, respectively (see Fig. 2). These fragments were gel purified and then biotinylated by random hexamer priming by the NEBlot kit method.

Mutant isolation. For isolation of fabA and fabB mutants of P. aeruginosa, a blunt-ended 830-bp Gm^r-confering fragment was ligated to NotI- or BglII-digested pPS752 DNA (see Fig. 1) to yield pPS798 (fabA::Gm^r) and pPS794 (fabB::Gm^r). Care was taken that in all cases the Gm^r-conferring aacC1 gene was inserted in the same transcriptional orientation as the fabA genes to ensure that the Gm^r insertions were nonpolar on downstream sequences. The mutated regions were then subcloned as blunt-ended BamHI-EcoRI fragments into the Smal site of the gene replacement vector PEX101T (32). This procedure yielded plasmids pPS815 (fabA::Gm^r) and pPS816 (fabB::Gm^r). For gene replacement in strain CY50, the previously described aacC1-based strategy was used (32). Su- crose-resistant colonies were obtained on RB medium in the presence of 0.1% oleate and then tested for unsaturated fatty acid auxotrophy. The mutations in strains PAO191 (fabA::Gm^r) and PAO192 (fabB::Gm^r) were obtained by this proced- ure. To verify the identity of the genomic Southern blots (data not shown), mutant PAO194 containing a fabA(Ts) allele was obtained as follows. A maturing primer (5'-GGCGCGGCGGGTTCGGCT) was synthesized which is complementary to nt 496 to 513 and contains the NorI site located within fabA (underlined; see Fig. 2) plus a single mismatch (lowercase t) that results in a G101D allele into the PAO1 chromosome, a blunt-ended 1.1-kb clone of pUC18, with Taq polymerase (Sangon, Scarborough, Ontario, Canada). The resulting 5328 HOANG AND SCHWEIZER J. BACTERIOL.

RESULTS AND DISCUSSION

Cloning of the region containing fabA. The partial fabA coding sequence was successfully amplified from P. aeruginosa chromosomal DNA by using two oligonucleotide primers (P1 and P2; marked in Fig. 2) with minor degeneracy modeled after conserved amino acid sequence regions found in the E. coli and Haemophilus influenzae FabA homologs. With the PCR-generated, cloned DNA fragment as a probe, a restriction map of the chromosomal fabA region was constructed and the entire fabA gene was cloned on a 4.8-kb BamHI-EcoRI fragment by the strategy described in Materials and Methods. The physical maps of some representative clones are shown in Fig. 1. When E. coli CY50 [fabA(Ts)] and CY274 [fabB(Ts)] were transformed with pPS752, both strains were able to grow on RB medium at 42°C in the absence of oleate supplemen- tation. The same strains harboring the vector control pUC18 did not grow at 42°C on RB medium unless it was supple- mented with oleate. These results indicated that the chromo- some insert of pPS752 contained not only the P. aeruginosa fabA homolog but also a gene capable of complementing the E. coli fabB(Ts) allele. Subcloning and deletion analysis further localized the respective complementing sequences. Subcloning of a 2.35-kb PstI fragment (pPS755) abolished fabA-comple- menting activity but complemented fabB normally, with fabB being transcribed from the lac promoter (Table 1). The addi- tion of a 0.5-kb KpnI-SmaI fragment from pPS752 to pPS755 restored the ability of the resulting pPS770 to complement both fabA and fabB, localizing both complementing activities on a 2.8-kb KpnI-PstI fragment. Finally, deletion of a 1.9-kb PstI-SphI fragment (pPS771) led to loss of fabB complementation activity without affecting the complementation of fabA, thus localizing fabB at least partially to the right of the Sphl-1 site as indicated in Fig. 1.

These results indicated that in contrast to E. coli, where fabA and fabB map at distant sites (2), the P. aeruginosa homologs are physically closely linked.

Identification and nucleotide sequence analysis of fabA and fabB. To verify that the ability of pPS770 to complement E. coli fabA and fabB was due to the presence of the corresponding P. aeruginosa homologs, its entire 2.8-kb insert was sequenced. The 2,771-bp sequence (part of which is presented in Fig. 2 and
is available in its entirety from GenBank under accession no. U70470) contained three open reading frames with a codon usage that is typical for *P. aeruginosa* (40) and with significant homologies to proteins in GenBank. The first of these, designated OrfS, extended from the BamHI site of clone pPS752 (Fig. 1) to nt 10 of the sequence shown in Fig. 2 (data not shown). OrfS showed significant homology to the sensory transduction histidine kinases from various bacteria, most notably Lema from *P. syringae* (15), although it was not identical to the *lemA* homolog from *P. aeruginosa* (42).

The *fabA* gene is separated from the OrfS-encoding gene by 187 nt. It comprises 515 nt and is preceded by a good consensus Shine-Dalgarno sequence (AGGAG). The deduced amino acid sequence of *fabA* defines a protein of 171 residues with a calculated molecular weight of 18,747. This protein is very similar in size to and shares significant homology with *E. coli* FabA (79% similarity and 68% identity), as well as the putative *H. influenzae* FabA protein (77% similarity and 64% identity (Fig. 3A).

The *fabB* gene was found to start 12 nt downstream of *fabA* and is preceded by a reasonable Shine-Dalgarno sequence (AGGG) which overlaps the *fabA* termination codon. The 1,214-nt gene encodes a protein of 405 amino acids with a calculated molecular weight of 42,687. The FabB protein is highly homologous to its counterparts from *E. coli* (77% similarity and 68% identity).
Similarity and 65% identity) and *H. influenzae* (76% similarity and 67% identity) (Fig. 3B). The region downstream of fabB contained a sequence with characteristics of a Rho-independent transcription termination signal (ΔG = −18.6 kcal/mol; calculated with the MacDNAsis program from Hitachi Software Engineering, San Bruno, Calif.) (28).

Overall, the sizes and amino acid compositions of FabA and FabB in the two bacteria are very similar, including conservation of the FabA active-site His-69 (1) and Asp-84 (18) (Fig. 3A) and of the FabB active-site Cys-161-containing sequence (Fig. 3B) (21)."}

Transcriptional organization of fabA and fabB. The organization of fabA and fabB predicted by nucleotide sequence analysis, i.e., separation of the two genes by only 12 bp and location of a putative terminator downstream of fabB, indicated that these two genes may be cotranscribed and form a fabAB operon. This notion was supported by the results of Northern analyses, which indicated a single 1.7- to 1.8-kb transcript when total PAO1 RNA was probed with fabA- and fabB-specific probes, respectively (Fig. 4). The finding that *P. aeruginosa* fabA and fabB form a single transcriptional unit may have important ramifications in terms of coordination of the regulation of expression of these two genes or may simply reflect the tendency of *P. aeruginosa* to cluster functionally related genes on the chromosome. However, the latter scenario probably does not offer the sole explanation, since none of the other fab genes were found in the vicinity of fabAB. In *E. coli*, transcription of the unlinked fabA and fabB genes is positively regulated by FadR, which also acts as a repressor of many unlinked genes and operons encoding

FIG. 3. Alignments of gram-negative FabA and FabB proteins. Alignments of *P. aeruginosa* (P.a.) FabA (A) and FabB (B) with their homologs from *E. coli* (E.c.) and *H. influenzae* (H.i.) are shown. Identical residues are indicated by white letters. The active-site residues, histidine and aspartic acid in FabA and cysteine in FabB, are marked with asterisks. The glycines whose changes to an aspartic acid residue in *E. coli* and *P. aeruginosa* resulted in temperature-sensitive FabA phenotypes are marked with solid dots. The homologies over the entire lengths of the proteins shown were as follows: FabA, 79% (P.a./E.c.) and 77% (P.a./H.i.); and FabB, 77% (P.a./E.c.) and 76% (P.a./H.i.).
proteins involved in long-chain fatty acid transport, activation, and β-oxidation (4, 12). FadR also seems to play a role in stasis survival and growth-phase-dependent regulation of expression of several genes, including the universal stress protein-encoding gene uspA and the fabA, fabA, and fabB genes (5). Analysis of the untranslated E. coli upstream region did not reveal DNA sequences with significant homology to the FadR operator consensus sequence (5). In addition, in an E. coli system, transcription of a fabApA1-lacZ transcriptional fusion was not regulated by FadR (data not shown). A more detailed transcriptional analysis of the transcriptional organization of fabAB and their mode(s) of regulation is under way.

Expression of FabA and FabB in E. coli. Although functional complementation already indicated expression of the products of fabA and fabB in E. coli, a T7 expression system was used to demonstrate the expression of gene products of the predicted sizes. To this end, pPS777 (fabA′-B′), pPS779 (fabB′), and pPS778 (fabA′) were transformed into strain BL21(DE3). Following induction and expression, the radiolabeled proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. The results of the expression experiment are shown in Fig. 5. Whereas cells containing pPS777 expressed two IPTG-inducible proteins with estimated molecular masses of 44 and 19 kDa (lane 2), cells containing pPS779 or pPS778 expressed the 44- or the 19-kDa protein, respectively (lanes 3 and 4). Neither polypeptide was expressed in vector-containing cells (lane 1). The observed sizes (44 and 19 kDa) of the P. aeruginosa FabB and FabA polypeptides compare very favorably with the molecular weights deduced from the nucleotide sequence (42,687 for FabB and 18,747 for FabA), as well as the predicted molecular weights of the corresponding E. coli (42,611 and 18,984 [GenBank accession no. J03186 and M24427, respectively]) and putative H. influenzae (42,534 and 19,464 [GenBank accession no. LA5260]) homologs.

Successful expression of the P. aeruginosa FabA and FabB proteins in the T7 expression system is an important step toward the generation of His-tagged proteins in the T7 promoter-based pET system, which is currently being used for overproduction, affinity purification, and biochemical characterization of the FabA and FabB enzymatic activities (11).

Isolation of P. aeruginosa fabA and fabB mutants. To confirm that fabA and fabB encode the P. aeruginosa homologs of its E. coli counterparts, nonpolarnal chromosomal fabA and fabB mutations were generated by insertion of a Gm′-conferring element and the mutant constructs were returned into the chromosome by allelic exchange. The insertions were confirmed by genomic Southern analyses (data not shown). The fabA and fabB mutants were unsaturated fatty acid auxotrophs. The fabA′B′ mutant pPS823 complemented both mutants. Analysis of the nature of the fabA(Ts) mutation in E. coli CY50 revealed a single G102D change, which results in a temperature-sensitive FabA enzyme (27). Since the P. aeruginosa FabA sequence contains a glycine in the corresponding position 101, in vitro site-directed mutagenesis was used to introduce a G101D change and the mutation was returned to the PAO1 chromosome by allelic exchange. The resulting mutant, PAO194, exhibited a temperature-sensitive growth phenotype; i.e., it did not grow at 42°C unless the medium was supplemented with oleate.

The observation that fabA and fabB mutants are unsaturated fatty acid auxotrophs demonstrated the conserved roles of FabA and FabB in unsaturated fatty acid biosynthesis. The same mutant analysis also indicates the presence of more than one fatty acid synthetase activity, e.g., FabF and/or FabH, since fabB mutants are saturated fatty acid prototrophs. The availability of an unmarked, defined fabA mutant will facilitate future studies of the role of this gene and its product in P. aeruginosa fatty acid biosynthesis. Furthermore, the demonstration that the introduction of a single base change into P. aeruginosa fabA, similar to that found in a temperature-sensitive E. coli fabA mutant, leads to the same temperature-sensitive phenotype not only proved that E. coli and P. aeruginosa FabA possess similar secondary structures, as already predicted by the protein similarities, but also demonstrated the importance of the affected glycine residue in assembly of a functional FabA enzyme. Analysis of the position of the affected glycine residue in the secondary structure indicates that the protein has less freedom to accommodate changes in the side chains without breaking hydrogen bonds in the secondary structure (18, 35). Thus, the glycine-to-aspartic-acid change may not allow for stable monomer folding or for stable dimerization at high temperatures.

Chromosomal mapping of the cloned fabAB genes. The fabAB genes were located on the PAO1 chromosome by hybridization of the biotin-labeled BamHI-EcoRI fragment from pPS752 (Fig. 1) to Southern blots of DpnI- and SpeI-digested
genomic DNA, which previously had been separated by pulsed-field gel electrophoresis (reference 19 and data not shown). In blots of SpeI-digested chromosomal DNA, the fabAB sequences hybridized to a restriction fragment of approximately 150 kb, corresponding to restriction fragment SpeI-R (6). Similarly, the same probe hybridized to a DpnI fragment of approximately 700 kb, which corresponded to DpnI-C. Thus, the fabAB genes were mapped between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map (14). In agreement with the physical mapping data, the fabA-Gm' mutation was genetically (50%) closely linked to cyt-S4 in pRO271-mediated chromosome mobilization experiments.

ACKNOWLEDGMENTS

Financial support to H.P.S. was provided by start-up funds from Colorado State University (CSU) and by a grant from the CSU College of Veterinary Medicine and Biomedical Sciences.

We thank J. S. Lam for providing the blots of pulsed-field gel electrophoresis-separated genomic DNA and C. O. Rock for providing bacterial strains.

REFERENCES

2. Latifi, A., M. Foglino, K. Nakan, P. Williams, and A. Lazdunski. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the sta-

lactonase, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J. Antibiot. 35:411–419.

15. Schweizer, H. P. 1991. The gdpA gene, an environmentally responsive gene, complements defective gdpB in E. coli, which encodes the putative activator for gyc-

zymol. 125:60–89.

23. Wieslander, L. 1979. A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling tem-
