Tetrachloroethene Dehalogenase from *Dehalospirillum multivorans*: Cloning, Sequencing of the Encoding Genes, and Expression of the *pceA* Gene in *Escherichia coli*

ANKE NEUMANN, GERT WOHLFARTH, AND GABRIELE DIEKERT*

Institut für Mikrobiologie der Universität Stuttgart, Stuttgart, Germany

Received 12 November 1997/Accepted 5 June 1998

The genes encoding tetrachloroethene reductive dehalogenase, a corrinoid-Fe/S protein, of *Dehalospirillum multivorans* were cloned and sequenced. The *pceA* gene is upstream of *pceB* and overlaps it by 4 bp. The presence of a 170-bp promoter sequence upstream of *pceA* and of a p-independent terminator downstream of *pceB* indicated that both genes are cotranscribed. This assumption is supported by reverse transcriptase PCR data. The *pceA* and *pceB* genes encode putative 501- and 74-amino-acid proteins, respectively, with calculated molecular masses of 55,887 and 8,354 Da, respectively. Four peptides obtained after trypsin treatment of tetrachloroethene (*PCE*) dehalogense were found in the deduced amino acid sequence of *pceA*. The N-terminal amino acid sequence of the PCE dehalogenase isolated from *D. multivorans* was found 30 amino acids downstream of the N terminus of the deduced *pceA* product. The *pceA* gene contained a nucleotide stretch highly similar to binding motifs for two Fe₄S₄ clusters or for one Fe₄S₄ cluster and one Fe₃S₄ cluster. A consensus sequence for the binding of a corrinoid to cob(II)alamin was not found in *pceA*. No significant similarities to genes in the data bases were detected in sequence comparisons. The *pceB* gene contained two membrane-spanning helices as indicated by two hydrophobic stretches in the hydrophobic plot. Sequence comparisons of *pceB* revealed no sequence similarities to genes present in the databases. Only in the presence of pUBS 520 supplying the recombinant bacteria with high levels of the rare *Escherichia coli* tRNA₅⁰₉ was *pceA* expressed, albeit nonfunctionally, in recombinant *E. coli* BL21 (DE3).

Dehalospirillum multivorans is a strictly anaerobic, gram-negative bacterium, which is able to grow with tetrachloroethene (*PCE*) as the terminal electron acceptor for the oxidation of different electron donors (14, 15, 19). The bacterium is able to grow at the expense of *H₂* and *PCE*. Since *H₂* oxidation cannot be coupled to ATP synthesis via substrate level phosphorylation, the reductive dechlorination of *PCE* has to be the energy-generating process, probably via a chemiosmotic mechanism. Therefore, this process was referred to as PCE respiration (25).

The key enzyme of the reductive part of catabolism, PCE reductive dehalogenase, mediates in vitro the reductive dechlorination of *PCE* via trichloroethene to cis,1,2-dichloroethene with reduced methyl viologen as the electron donor. PCE dehalogenase was purified from the cytoplasmic fraction of *D. multivorans* cells (16). The enzyme contains a corrinoid as well as about eight iron atoms and eight acid-labile sulfur atoms. The corrinoid is involved in this reaction presumably as a redox-active prosthetic group, as deduced from the finding that it has to be reduced to cob(II)alamín prior to the nucleophilic attack on the carbon of *PCE* (13, 25). This reaction represents a completely new type of biochemical reaction. Here we describe the cloning and sequencing of the genes of the PCE dehalogenase for further characterization of the enzyme and for comparison with the genes of other proteins.

MATERIALS AND METHODS

Determination of amino acid sequences of PCE dehalogenase. *D. multivorans* was grown as previously described (14). PCE dehalogenase was isolated from the organism as described elsewhere (16). The protein was treated with trypsin (22). The peptides obtained were separated by high-pressure liquid chromatography with a Grom-Sil 300 octyldecyl silane column, and the N-terminal amino acid sequence of four peptides and PCE dehalogenase were determined by H. Weber at the Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik (Stuttgart, Germany) or V. Nödinger at the Institut für Technische Biochemie (University of Stuttgart, Stuttgart, Germany).

Cloning of pceA. The isolation of DNA from *D. multivorans*, restriction, DNA ligation, and other standard techniques were performed as described elsewhere (2). Plasmid DNA for cloning and sequencing was prepared with the Flexi Prep kit (Pharmacia, Freiburg, Germany). Properties of plasmids used in this study are summarized in Table 1.

A homologous probe for *pceA* was generated by PCR with genomic DNA from *D. multivorans* as the template. The oligonucleotides (GGI GAG GTI AAG CCI TGG TT and GTC CCA IAC YTC IGT DAT RTT) were derived from the internal peptides GEVKPWFLXAYD and NITEVWGDYK (Fig. 1). PCR mixtures (50 μl) for the amplification of genomic DNA contained 50 pmol of each primer, 0.1 μg of chromosomal template DNA, a 0.1 mM concentration of each deoxynucleotide triphosphate, Goldstar DNA polymerase reaction buffer, and 1 mM MgCl₂. The PCR program started with initial denaturing (3 min, 96°C). The addition of 0.5 U of Goldstar DNA polymerase (Eurorgenet, Cologne, Germany) was followed by 29 cycles of polymerization (1 min, 45°C; 1.5 min, 72°C; 0.5 min, 95°C) and a final cycle with prolonged polymerization time (15 min, 72°C). A 1.2-kb fragment was amplified and cloned into a T-tailed vector (11) prepared from pBluescript II SK⁺ (Stratagene, Heidelberg, Germany). The resulting plasmid, named pW3, was partially sequenced. The identity of the fragment was confirmed by comparison of the deduced amino acid sequence with the peptide sequences of PCE dehalogenase.

Genomic DNA was digested with several restriction endonucleases. The DNA fragments generated were separated by agarose gel electrophoresis, transferred to a nylon membrane by the capillary transfer method (21), and hybridized at 68°C with the 1.2-kb PCR product labeled with digoxigenin (DIG) by using the DIG DNA labeling and detection kit (nonradioactive) as indicated by the supplier (Boehringer, Mannheim, Germany). Genomic EcoRI fragments were isolated from agarose gels (Gene Clean II, Bio 101, La Jolla, Calif.), ligated into pBluescript II SK⁺, and transformed into *E. coli* DH5α cells (9). Positive clones were identified by Southern hybridization with the DIG-labeled 1.2-kb PCR product by using the DIG DNA detection kit (nonradioactive). One clone, named pY179, containing a 6-kb EcoRI fragment was used for further analyses.

DNA sequencing and analyses. The nucleotide sequence of the 6-kb EcoRI fragment was determined by sequencing pY179 and subclones of pY179. For the sequencing reactions, an Applied Biosystems Prism kit (Weiterstadt, Germany) was used, with subsequent electrophoresis and analyses in an Applied Biosystems 373A sequencer. Oligonucleotides (about 30 bases) were used for sequencing the remaining gaps. Both strands were independently and completely sequenced.
into E. coli Freshly transformed optical density at 600 nm (OD600) of between 0.5 and 0.7. Samples (250 ml) were medium was inoculated with this culture and induced with 0.4 mM IPTG at an

E. coli ATT TTT TAA CCC TAT CCT TTC TAA AGC. The PCR products were CAT GGG TGT ACC AGG TGC AAA TGC and GCA AGG ATC CTC ATG

pET 11d Expression vector, Ap r

pY179 6-kb pPCEA PCR-generated

pY179 6-kb pceAB PCR-generated

Table 1. Plasmids used in this study

plasmid Relevant characteristics Source

pET 11d Expression vector, Ap r; T7lacO promoter; ColE1 origin Stratagene

pLysS Km r; T7 lysozyme; origin DNA Stratagene

pU6 S20 Derived from pACYC 177; Km r; lacI argI oriplasm 15A R. Mattes

pW3 1.2-kb PCR product in EcoRV site of pBluescript II SK+ This study

pY179 6-kb EcoRI fragment of D. multivorans DNA in EcoRI site of pBluescript II SK+ This study

pPEA PCR-generated pceA between Ncol and BamHI sites of pET 11d This study

pPEA’ PCR-generated pceA’ (without the leader sequence) between Ncol and BamHI sites of pET 11d This study

pPEAB PCR-generated pceB between Ncol and BamHI sites of pET 11d This study

*p Ap r, ampicillin resistance gene; Km r, kanamycin resistance gene.

RESULTS

Cloning and sequencing the PCE dehalogenase gene. PCE dehalogenase from D. multivorans was purified from the cytoplasmic fraction of pyruvate- and fumarate-grown cells as described elsewhere (16). The N terminus of the purified protein was sequenced. It started with the amino acid glycine, indicating a posttranslational processing of the protein. In addition, the PCE dehalogenase was digested with trypsin and the amino acid sequences of four of the resulting peptides were determined (Fig. 1). Two degenerated oligonucleotides were derived from the amino acid sequences of peptides 1 and 4 (Fig. 1). A 1.2-kb fragment was amplified by PCR with genomic DNA of D. multivorans as the template. The PCR product was cloned in pBluescript, and resulting plasmid pW3 was partially sequenced. All four peptides were found in the deduced amino acid sequence encoded by the 1.2-kb fragment. Given the apparent molecular mass of 58 kDa for the PCE dehalogenase.

D. multivorans extracts for supplementation of the growth medium were prepared by suspending 30 g of cells (wet weight; grown on pyruvate and fumarate) in 70 ml of 0.1 M potassium phosphate buffer pH 7.5. The cells were disrupted with a French press. The crude extract was autoclaved and centrifuged for 20 min at 8,000 × g. One liter of E. coli minimal medium (8) was supplemented with 25 ml of the supernatant.

Nucleotide sequence accession number. The sequences described in the present manuscript have been deposited in GenBank under accession no. AF022812.
From gel filtration (58 kDa). In the amino acid sequence deduced, the molecular mass of the native PCE dehalogenase determined by zymography (about 55 kDa) is in accordance with the apparent molecular mass of 8,354 Da. Two hydrophobic regions were detected in the hydrophatic plot of this protein, indicating the presence of two membrane-spanning helices (Fig. 3). Cysteine and histidine residues were not detected in the deduced amino acid sequence of the protein deduced from pceA, indicating that this protein was the unprocessed PCE dehalogenase. The molecular masses of the deduced 501-amino-acid protein (nonprocessed) and of the truncated 471-amino-acid protein, indicating that the protein was the unprocessed PCE dehalogenase. The molecular masses of the deduced 501-amino-acid protein (nonprocessed) and of the truncated 471-amino-acid protein were calculated to be 55,887 Da and 52,674 Da, respectively.

Taking into consideration the fact that PCE dehalogenase contains a corrinoid and about eight iron and eight acid labile sulfur atoms (16), the calculated size of the truncated holoenzyme (about 55 kDa) is in accordance with the apparent molecular mass of the native PCE dehalogenase determined by gel filtration (58 kDa). In the amino acid sequence deduced from pceA, consensus sequences similar to that for two Fe₄S₄ clusters (CXXCXXCXXCP; 7) were identified from amino acids 365 to 377 and 420 to 428 (Fig. 1). The only difference from the consensus sequence is a glycine instead of a cysteine at amino acid position 417. A consensus sequence for the binding of a corrinoid (DXHXXG; 12) could not be detected. No other significant similarities to genes in the databases were found in sequence comparisons. In addition, no significant similarities were revealed by amino acid sequence comparisons of the pceA gene product with vitamin B₁₂-binding proteins performed with the software package PC/Gene.

The start codon of a further ORF (pceB) overlaps by four bases the C terminus-encoding region of pceA (Fig. 1). The 74-amino-acid protein encoded by this gene (225 bp) has a calculated molecular mass of 8,354 Da. Two hydrophobic regions were detected in the hydrophatic plot of this protein, indicating the presence of two membrane-spanning helices (Fig. 3). Cysteine and histidine residues were not detected in the deduced amino acid sequence of pceB. In addition, sequence comparisons revealed no significant similarities to genes present in the databases.

Each of the start codons of pceA and pceB is preceded by a putative ribosome binding site (Fig. 1). As shown in Fig. 1, there are two stretches resembling the −10 and −35 regions of an E. coli σ70 promoter, indicating a transcription start between positions 3160 and 3170. The primer extension method, with total RNA isolated from D. multivorans as the template, was used to determine that the transcription start site of the PCE dehalogenase was at approximately position 3180 (Fig. 4). In addition, RT-PCR with two different oligonucleotide pairs (pair I: positions 3162 to 3194 and 3501 to 3476; pair II: positions 3090 to 3117 and 3501 to 3476) was conducted with total RNA from D. multivorans. Only with pair I was a PCR product (size, 339 bp) obtained, indicating a transcription start between positions 3117 and 3161. Downstream of the pceB stop codon, an inverted repeat followed by a poly(T) stretch (Fig. 1), which possibly acts as a ρ-independent terminator, was detected. RT-PCR with an oligonucleotide pair (positions 4660 to 4682 and 4992 to 4967) revealed a 335-bp PCR product, indicating a transcription start between positions 3117 and 3161. Downstream of the pceB stop codon, an inverted repeat followed by a poly(T) stretch (Fig. 1), which possibly acts as a ρ-independent terminator, was detected.

Sequence analysis of the PCE dehalogenase gene. An open reading frame (ORF) coding for a protein (product of pceA) which harbors the N terminus and all four internal peptides of PCE dehalogenase was found on the 6-kb EcoRI fragment (Fig. 1). The sequence of the product of this ORF started 30 amino acids (corresponding to 90 bp of the ORF) upstream of the N terminus of PCE dehalogenase isolated from D. multivorans. In the N-terminal part of the deduced protein encoded by pceA, a putative signal sequence, RRXFXK, followed by a stretch of hydrophobic amino acids was detected (5) (Fig. 2). These findings support the assumption of a processing of the protein. During the first steps of purification of PCE dehalogenase, a protein with an apparent molecular mass of 61 kDa was copurified (Fig. 6, lane 6, band B). The N-terminal sequence of this protein was identical to the N-terminal amino acid sequence of the protein deduced from pceA, indicating that this protein was the unprocessed PCE dehalogenase. The molecular masses of the deduced 501-amino-acid protein (nonprocessed) and of the truncated 471-amino-acid protein were calculated to be 55,887 Da and 52,674 Da, respectively.

The data were taken from reference 5. The sequences have been aligned and translated using the software package SeqWise (IntelliGenetics Inc.).
membrane to the cytoplasmic membrane. This is feasible, since the PCE dehalogenase is involved in a respiratory process (13, 17). No significant similarities of the pceB product to other proteins was found in sequence comparisons. Since the amino acids histidine and cysteine were lacking in the pceB gene product, a binding of heme to the protein as in cytochromes or of Fe/S clusters is not feasible, indicating that this “subunit” is probably not involved in the electron transport chain.

In the upstream region of pceA, three ORFs (ribABH) were identified as encoding putative enzymes of riboflavin biosynthesis; one ORF could not be identified. No ORF could be detected in the 0.9-kb downstream region of pceB. Putative ribosome binding sites were detected upstream of the start codon of each gene, indicating that the genes could be expressed in D. multivorans.

From the finding that the N terminus of PCE dehalogenase was found downstream of the N terminus of the deduced pceA protein, it is concluded that the protein was modified by truncation of the first 30 amino acids in D. multivorans. The modification signal was probably the peptide RXFXKK followed by a hydrophobic stretch, which was mainly reported for periplasmic, cofactor-binding proteins (5). This is surprising, since PCE dehalogenase was recovered exclusively in the cytoplasmic fraction of D. multivorans. The only other protein containing this leader sequence and facing the cytoplasmic side of the membrane is the dimethyl sulfoxide reductase of E. coli. This enzyme was reported to contain a hydrophobic subunit, which obviously hampers the catalytically active subunits from being excreted into the periplasm (24). Hence, it is feasible that the product of pceB serves a similar function for PCE dehalogenase. Usually, the cleavage sites for these and the Sec signal peptides are preceded by two small amino acids at positions −1 and −3 (23). In the pceA gene product, this site is preceded by phenylalanine at position −1 (Fig. 2).

The deduced amino acid sequence of corrinoid-iron/sulfur protein PCE dehalogenase exhibits no significant similarities to those of other proteins, including other cobalamin-containing enzymes. In addition, the cobalamin-binding site DXHXXG described for, e.g., the cobalamin-dependent methionine synthase (3) as well as for several adenosylcobalamin-containing enzymes to genes in the databases was detected. Further upstream of ORF1, three ORFs were identified as genes encoding enzymes of the riboflavin biosynthesis pathway. The first ORF (ribA) encodes the C-terminal part of a protein with the greatest sequence similarity to GTP cyclohydrolase II of Helicobacter pylori (81 of 141 amino acids identical). The two other ORFs encode proteins with sequence similarities to the 3,4-dihydroxy-2-butanone-4-phosphate synthase (ribB) of Photobacterium phosphoreum (115 of 356 amino acids identical) and to the beta subunit of the riboflavin synthase (ribH) of E. coli (81 of 156 amino acids identical). Each of the start codons of the ORFs is preceded by a putative ribosome binding site. An overview of the DNA region comprising the genes for PCE dehalogenase is given in Fig. 5.

Expression of the PCE dehalogenase genes in E. coli BL21.

The pceA gene was amplified by PCR with pY179 as the template. The PCR product was cloned in PET11d downstream of an IPTG-inducible T7/lac promoter and transformed into E. coli BL21 (DE3)/pLysS. After induction of the bacteria with 0.4 mM IPTG, neither PCE dehalogenase activity nor a protein of the molecular size of PCE dehalogenase as determined by SDS-PAGE could be detected in crude extracts. RT-PCR of RNA isolated from IPTG-induced bacteria revealed the expected DNA fragments indicating the transcription of the gene (data not shown).

Analysis of the codon usage of the D. multivorans gene in pY179 revealed that the triplet AGA coding for arginine is used much more frequently than in E. coli (data not shown). Moreover, two AGA tandems are present in pceA (positions 3302 to 3307 and 3776 to 3781 in Fig. 1). In E. coli, AGA codons are translated by the rare tRNA\(^{AGA}\) encoded by argU (18). The plasmid pUBS 520 containing argU was transformed in E. coli BL21 (DE3) harboring pceA, pceA', or pceB (see Table 1). After induction of the bacteria with 0.4 mM IPTG, proteins with molecular masses of 61 ± 1 kDa (pceA product) and 57 ± 1 kDa (pceA' product) were expressed in crude extracts of the respective recombinant bacteria as determined by SDS-PAGE (shown for pceA in Fig. 6). PCE dehalogenase activity could not be detected in crude extracts of recombinant E. coli. Growth of the recombinant bacteria under anaerobic conditions or the addition of vitamin B12 or of autoclaved broth did not result in functional expression of PCE dehalogenase.

Discussion

We show here for the first time cloning, sequencing, and expression of a PCE reductive dehalogenase from gram-negative, strictly anaerobic D. multivorans. Evidence for the presence of two ORFs, designated pceA and pceB, on the PCE dehalogenase operon is presented. From the finding that a putative E. coli σ70 promoter region precedes pceA and a -independent terminator structure follows the stop codon of pceB, it was concluded that the two genes form one operon. This assumption was further supported by RT-PCR experiments indicating that both ORFs are cotranscribed. ORF pceA encodes the PCE dehalogenating protein. The finding that pceB encodes a highly hydrophobic protein with two trans-

![Fig. 5. Physical map of the DNA region comprising the genes for PCE dehalogenase.](http://jb.asm.org/)

![Fig. 6. Expression of pceA from D. multivorans in E. coli BL21 (DE3) as analyzed by SDS-PAGE.](http://jb.asm.org/)
mutases (4, 12), could not be detected. Since there are corrinoid-containing enzymes, which also lack this binding site, e.g., the corrinoid-iron-sulfur protein of *Clostridium thermoacidicum* (10), the corrinoid is probably noncovalently bound to the PCE dehalogenase. Evidence based on electron paramagnetic resonance (EPR) data is available for the PCE dehalogenase of *Dehalobacter restrictus* and shows that the cobalamin in this enzyme is a base-off corrinoid (20), suggesting that the cobalt is not coordinated with a histidine of the apoenzyme. Assuming a similar structure for the enzyme of *D. multivorans*, the lack of a corrinoid binding site is not surprising.

A consensus sequence very similar to that for Fe₄S₄ ferredoxins (two CXXXXXCCXXCP stretches; 7) was detected in the deduced amino acid sequence encoded by *pceA*. However, the first cysteine of the second stretch is replaced by glycine. There are three possible explanations for this finding: (i) one iron atom of an Fe₄S₄ cluster is not bound to the sulfur of cysteine; (ii) one of the clusters contains only three Fe atoms; (iii) one iron atom of an Fe₄S₄ cluster is bound to the sulfur atom of cysteine, which is not located in the cluster. EPR experiments performed with the PCE dehalogenase of *D. restrictus* indicated the presence of 8 Fe atoms (20). Until now, the absence of cysteine at the first position of the second stretch has never been reported for Fe₄S₄ proteins (examples are given in Fig. 7). Database research revealed a consensus of both three other sequences, probably those of unknown proteins (Fig. 7). The elucidation of the structure of the iron-sulfur clusters will have to await EPR studies on the PCE dehalogenase of *D. multivorans*.

The high PCE concentrations detected in groundwater and soils of contaminated sites is due to extensive use of this compound as a solvent during the last 50 years. It is surprising that PCE dehalogenase has no significant homology to other proteins known so far, although it has to be assumed that the enzyme was developed from ancestors within this short period of time. The evolutionary origin of the enzyme remains to be unraveled.

The codon usage of *D. multivorans* differs from that of *E. coli* especially with respect to the arginine tRNA codons. In the genes of *D. multivorans* known so far, the frequency of the codon AGA is about the same as in closely related *Wolinella succinogenes* and about 10 times higher than in *E. coli*. Since AGA tandem, which often result in the formation of truncated gene products (18), are present in *pceA*, it was not surprising that the gene was only expressed in *E. coli* in the presence of pUBS 520, which supplied the recombinant bacteria with high levels of the rare *E. coli* tRNAAGA for the AGA codon. Crude extracts of the recombinant *E. coli* did not exhibit PCE-dehalogenating activity. The protein expressed in *E. coli* has an apparent molecular mass of 61 kDa, which was about 4 kDa larger than that of the PCE dehalogenase isolated from *D. multivorans*. Therefore, it is feasible that the 61-kDa gene product is an unprocessed PCE dehalogenase. This might be one of the reasons why the 61-kDa PCE dehalogenase was not enzymatically active. Although the apparent signal peptide RRXFXK should be processed by *E. coli* under anaerobic conditions (17), no modification of the *pceA* protein occurred. A possible explanation may be that no cofactors were bound to the dehalogenase in *E. coli*, while only proteins containing bound cofactors are processed in the signal peptide-carrying proteins (5). We also tried to express the *pceA* gene encoding the processed protein in *E. coli*. Although the protein was expressed, no PCE dehalogenase activity could be detected. Possibly the corrinoid and/or the Fe/S clusters have not been incorporated in the protein. Since *E. coli* is not able to synthesize corrinoids, vitamin B₁₂ was added to the growth medium of the recombinant bacteria. The finding that no activity could be detected in the crude extracts of the supplemented bacteria may be due to the possibility that *D. multivorans* uses corrinoid derivatives other than vitamin B₁₂. To test this hypothesis, autoclaved crude extracts of *D. multivorans* were added to the growth medium supplying the recombinant *E. coli* with *D. multivorans* corrinoids. Supplementation of the medium with *D. multivorans* corrinoids did not result in functional expression. It is feasible that the corrinoids were not taken up by *E. coli* under the experimental conditions applied.

ACKNOWLEDGMENTS

This work was supported by grants from the Deutsche Forschungsgemeinschaft, the BMBFT, and the Fonds der Chemischen Industrie. We gratefully acknowledge helpful discussions with J. Altenbuchner and R. Mattes (Stuttgart, Germany). The plasmid pUBS 520 was kindly provided by R. Mattes (Stuttgart, Germany).

REFERENCES

