Characterization of $dacC$, Which Encodes a New Low-Molecular-Weight Penicillin-Binding Protein in *Bacillus subtilis*

LOTTE B. PEDERSEN, THOMAS MURRAY, DAVID L. POPHAM, AND PETER SETLOW

Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, and Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406

Received 27 April 1998/Accepted 15 July 1998

The *pbp* gene (renamed *dacC*), identified by the *Bacillus subtilis* genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional *dacC-lacZ* fusion revealed that *dacC* expression (i) is initiated at the end of stationary phase; (ii) depends strongly on transcription factor σ^H; and (iii) appears to be initiated from a promoter located immediately upstream of *yoxA*, a gene of unknown function located upstream of *dacC* on the *B. subtilis* chromosome. A *B. subtilis* *dacC* insertional mutant grew and sporulated identically to wild-type cells, and *dacC* and wild-type spores had the same heat resistance, cortex structure, and germination and outgrowth kinetics. Expression of *dacC* in *Escherichia coli* showed that this gene encodes an ~59-kDa membrane-associated penicillin-binding protein which is highly toxic when overexpressed.

The polymerization and cross-linking of peptidoglycan in bacteria is catalyzed by a group of enzymes known as penicillin-binding proteins (PBPs). In *B. subtilis*, a gram-positive bacterium that forms heat-resistant endospores upon nutrient deprivation, PBPs are required not only for synthesis of peptidoglycan in vegetative cells but also for synthesis of the spore cortex and septum and the spore’s primordial germ cell wall and cortex (7).

Low-molecular-weight PBPs are usually monofunctional DD-peptidases, which regulate the number of peptide cross-links formed in the peptidoglycan (11, 12). To date, three genes from *B. subtilis* (*dacA, dacB*, and *dacF*) encoding peptidopolypeptides with high sequence homology to low-molecular-weight DD-peptidases have been cloned and characterized (8, 45, 49). The most well characterized of these is the *pbp* gene (*dacB*, which is transcribed around stage III of sporulation from a σ^E-dependent promoter (8, 37), suggesting a role for PBP* in spore cortex synthesis. Indeed, spores of *dacB* null mutants are heat sensitive (6, 30), and their cortex has more peptide side chains, a higher degree of cross-linking, and less muramic acid lactam residues than that of wild-type spores (4, 29, 30). The gene encoding PBP5, *dacA* (45), accounts for most if not all β-carboxypeptidase activity in exponentially growing *B. subtilis* (22, 45, 47) and is present in lower amounts in stationary-phase and sporulating cells (39). Inactivation of PBP5 is not lethal for the cell (5, 45) and also has no effect on spore heat resistance (6, 30). However, overexpression of *Bacillus stearothermophilus dacA* in *Escherichia coli* results in cell lysis (10), and attempts to transform *E. coli* with a plasmid containing *B. subtilis dacA* were unsuccessful (45). The *dacA* gene product has not yet been identified biochemically, but studies using *dacA-lacZ* transcriptional fusions showed that *dacA* is transcribed in the forespore compartment of the sporulating cell (49) and that this transcription is σ^H dependent (36). Disruption of *dacA* has no obvious effect on spore formation, spore cortex structure, or spore properties (4, 29, 49), and thus the function of this gene is unclear.

Recently, the *B. subtilis* genome sequencing project (20, 46) identified the *pbp* gene (here renamed *dacC*) encoding a putative 491-residue low-molecular-weight PBP with highest sequence homology to *E. coli* PBP4 (19) and PBP4 from *Actinomadura* strain R39 (14). In this work we show that *dacC* expression is dependent on transcription factor σ^H and that *dacC* does indeed encode a new membrane-bound PBP, which migrates at the position of *B. subtilis* PBP4*, between PBP4 and PBP5, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Therefore, we have named this protein PBP4a. While a *dacC* mutation had no phenotypic effect in *B. subtilis*, overexpression of *dacC* was toxic to *E. coli*.

Transcriptional regulation of *dacC*. To study the transcriptional regulation of *dacC*, strain PS2323 carrying a transcriptional *dacC-lacZ* fusion at the *dacC* locus was constructed (all *B. subtilis* strains used in this study are listed in Table 1). PCR was used to generate a 654-bp fragment containing a part of the *B. subtilis* genome starting 162 nucleotides (nt) upstream and ending 480 nt downstream of the putative *dacC* translational initiation codon. The primers used for PCR were Y1 and Y2 (Table 2), and the template was chromosomal DNA from strain PS832. Digestion of the 654-bp PCR product with *BamHI* and *EcoRI* yielded a 649-bp fragment which was ligated into *BamHI/EcoRI*-digested plasmid pUC19 to generate plasmid pTMY1 (Fig. 1A). DNA sequencing confirmed that the DNA sequence of the insert was correct. The 649-bp *BamHI/EcoRI* fragment from pTMY1 was ligated into *BamHI/EcoRI*-digested plasmid pF751a (43) to generate plasmid pTMY2 (Fig. 1A), which was used to transform PS832 to generate strain PS2323, which contains a transcriptional *dacC-lacZ* fusion at the *dacC* locus. After Southern blot analysis was used to verify that the chromosome structure of PS2323 was as expected (data not shown), cells were sporulated at 37°C in 2× SG medium (24), 1-ml samples were withdrawn at various times, and the β-galactosidase activities of the samples were measured using the substrate 4-methylumbelliferyl-β-D-galactoside (27). As shown in Fig. 2A, *dacC-lacZ* expression began shortly after the end of exponential growth and peaked about 2 h into sporulation. However, no β-galactosidase activity was detected.
TABLE 1. B. subtilis strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant genotype*</th>
<th>Source, reference, or construction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS832</td>
<td>Wild type, trp- revertant of 168</td>
<td>Laboratory stock</td>
</tr>
<tr>
<td>AGS18</td>
<td>pheA1 trpC2 abrB:Ti017 ErmA</td>
<td>A. D. Grossman</td>
</tr>
<tr>
<td>AGS29(A)</td>
<td>pheA1 trpC2 spo0H::pST174 Cm'</td>
<td>A. D. Grossman</td>
</tr>
<tr>
<td>DZR168</td>
<td>pheA1 trpC2 spo0A::Erm'</td>
<td>A. D. Grossman</td>
</tr>
<tr>
<td>MO1615</td>
<td>spo0H::Kan'</td>
<td>P. Stragier</td>
</tr>
<tr>
<td>PS258</td>
<td>trpC2 codY::Erm'</td>
<td>A. L. Sonenshein</td>
</tr>
<tr>
<td>RL1061</td>
<td>Py79 spo0H:IGB::Erm'</td>
<td>R. Losick</td>
</tr>
<tr>
<td>SM69-1</td>
<td>Py79 spo0H:Sp'</td>
<td>S. Meyer</td>
</tr>
<tr>
<td>PS1805</td>
<td>spo0A::Erm'</td>
<td>31</td>
</tr>
<tr>
<td>PS1840</td>
<td>spo0A::Erm'</td>
<td>PS2323</td>
</tr>
<tr>
<td>PS2232</td>
<td>amyE::dacs-lacZ Cm'</td>
<td>pTMY3—PS832</td>
</tr>
<tr>
<td>PS2233</td>
<td>dacs-lacZ Cm'</td>
<td>PS832</td>
</tr>
<tr>
<td>PS2234</td>
<td>dacs::PMY4 Sp'</td>
<td>PS832</td>
</tr>
<tr>
<td>PS2459</td>
<td>dacs-lacZ spo0H::Kan' Cm'</td>
<td>MO1615—PS2323</td>
</tr>
<tr>
<td>PS2521</td>
<td>dacs-lacZ spo0H::IGB::Erm' Cm'</td>
<td>RL1061—PS2323</td>
</tr>
<tr>
<td>PS2522</td>
<td>dacs-lacZ spo0I::Sp' Cm'</td>
<td>SM69-1—PS2323</td>
</tr>
<tr>
<td>PS2627</td>
<td>dacs-lacZ Erm'</td>
<td>PS832</td>
</tr>
<tr>
<td>PS2628</td>
<td>spo0H::Pol074 Cm'</td>
<td>AGS55—PS832</td>
</tr>
<tr>
<td>PS2629</td>
<td>dacs-lacZ spo0H::pol074Erm' Cm'</td>
<td>PS2627</td>
</tr>
<tr>
<td>PS2630</td>
<td>dacs-lacZ abrB::Ti017 Erm' Cm'</td>
<td>AGS58—PS2323</td>
</tr>
<tr>
<td>PS2631</td>
<td>abrB::Ti017 Erm'</td>
<td>AGS58—PS2323</td>
</tr>
<tr>
<td>PS2632</td>
<td>dacs-lacZ spo0A::Erm' Cm'</td>
<td>PS1840—PS2323</td>
</tr>
<tr>
<td>PS2760</td>
<td>amyE::yoea-3 Cm'</td>
<td>PS2638—PS832</td>
</tr>
<tr>
<td>PS2795</td>
<td>dacs-lacZ spo0H::Kan' spo0A::Erm' Cm'</td>
<td>PS1840—PS2459</td>
</tr>
<tr>
<td>LP41</td>
<td>dacs-lacZ codY::Erm' Cm'</td>
<td>PS258—PS2323</td>
</tr>
</tbody>
</table>

* Abbreviations: Cm', resistance to 5 μg of chloramphenicol per ml; Erm', resistance to 0.5 μg of erythromycin and 12.5 μg of lincomycin per ml; Sp', resistance to 100 μg of spectinomycin per ml; Kan', resistance to 10 μg of kanamycin per ml.

* This strain contains a truncated copy of spo0H under the control of its normal promoter and an intact copy of spo0H under the control of Pspac and is therefore spo0H in the absence of IPTG (18).

A likely explanation for this delay is that spo0H expression is regulated posttranscriptionally so that induction of spo0H expression does not lead to an immediate rise in functional σH levels (16, 48).

TABLE 2. PCR primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide sequence*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>5'-CGGAATTTCCAATATACGTTAAGACAAACCGACTGTTG-3'</td>
</tr>
<tr>
<td>Y2</td>
<td>5'-CAAGATCCAGTACATCCAGGACGTAGTGGC-3'</td>
</tr>
<tr>
<td>pph5-3'</td>
<td>5'-CAAGATCTCAATCTGTCGAGATCGTGTTGTGCGAACCGCACAGCG-3'</td>
</tr>
<tr>
<td>pph3-3'</td>
<td>5'-CAAGATCCTCAGTACATCCAGGACGTAGTGGC-3'</td>
</tr>
<tr>
<td>pph5-5'</td>
<td>5'-CAAGATCTCAATCTGTCGAGATCGTGTTGTGCGAACCGCACAGCG-3'</td>
</tr>
<tr>
<td>pph6-5'</td>
<td>5'-CAAGATCTCAATCTGTCGAGATCGTGTTGTGCGAACCGCACAGCG-3'</td>
</tr>
<tr>
<td>yoeA-3'</td>
<td>5'-CCGCAGATCTCAATCTGTCGAGATCGTGTTGTGCGAACCGCACAGCG-3'</td>
</tr>
<tr>
<td>yoeA-2'</td>
<td>5'-CCGCAGATCTCAATCTGTCGAGATCGTGTTGTGCGAACCGCACAGCG-3'</td>
</tr>
</tbody>
</table>

* Restriction endonuclease sites are underlined.
is upstream of the 649-bp BamHI/EcoRI fragment in PS2322. The DNA sequence of the region upstream of dacC suggests that dacC may be in a two-gene operon with a gene of unknown function termed yoxA (20). Strikingly, the region immediately upstream of the putative yoxA translational initiation codon contains sequences (5'-TGAAT-3' and 5'-GGAGGAAAT-3') separated by 14 bp that match perfectly the 210 and 235 consensus sequences of σH-dependent promoters (15, 33).

To investigate whether this putative σH promoter is functional, a 290-bp fragment containing the region from 13 nt upstream of the putative yoxA initiation codon to 153 nt upstream of the putative yoeA stop codon (yoeA is gene of unknown function located upstream of yoxA [20]) was PCR amplified from chromosomal DNA of strain PS832 using primers yoxa-P2a and yoea-3 (Table 2). The PCR product was ligated into pCR2.1 (Invitrogen), generating plasmid pLP1, and the DNA sequence of the insert was confirmed. Digestion of plasmid pLP1 with BamHI and HindIII yielded a 236-bp fragment, which was cloned into BamHI/HindIII-digested pDG268 (3), generating plasmid pLP2 (Fig. 1A), which was then introduced into strain PS832, generating strain PS2760, which contains the yoxA-lacZ fusion at the amyE locus. Southern blot analysis confirmed that the chromosome structure of strain PS2760 was as expected (results not shown). Measurement of the β-galactosidase activity in a sporulating culture of PS2760 showed that the timing and level of expression of the yoxA-lacZ fusion in this strain were identical to those of strain PS2323, which contains a dacC-lacZ fusion at the dacC locus (data not shown). This strongly suggests that the promoter controlling dacC is located within the 236-bp BamHI/HindIII fragment in plasmid pLP2 and further supports the idea that dacC transcription depends directly on σH. However, due to the low level of dacC transcription, we did not attempt to further localize the dacC transcription start site.

FIG. 1. Diagram of the dacC locus, and constructs and protein variants generated. (A) Map of the dacC locus. (I) Putative ORFs are indicated by open boxes, potential transcription terminators are shown as stem-loop structures, and the arrow depicts the predicted transcription initiation site and direction of transcription. (II) Fragments used in plasmid constructs for insertional mutagenesis and for generation of transcriptional dacC-lacZ fusions. (III) Map of selected restriction endonuclease cleavage sites. (B) Schematic depiction of PBP4a variants generated in this work. Amino acids 1 to 29 (gray) constitute a cleavable signal peptide as described in the text. The three regions that constitute the penicillin-binding site (SSLK, SNN, and KTG) were inferred by sequence alignment of PBP4a with PBP4 from Actinomadura strain R39 (14) and E. coli PBP4 (19) using GCG software (Wisconsin Package Version 9.1; Genetics Computer Group, Madison, Wis.). Amino acids 470 to 491 (hatched) were predicted by a computer analysis (DNA Strider 1.2) to form an amphipathic α-helix, potentially serving as a membrane anchor. Numbers refer to amino acids of the PBP4a primary sequence. The figure is not drawn to scale.

Generation and analysis of an insertional dacC mutant. To begin to study the function of dacC, we constructed strain PS2324 containing a disrupted dacC gene by transformation of strain PS832 with plasmid pTMY4 (Fig. 1A). Plasmid pTMY4 was constructed by digesting plasmid pTMY1 with NsiI and SalI, which released an ~400-bp fragment from within the coding region of dacC, and ligating this ~400-bp fragment into PstI/SalI-digested plasmid pJL73 (23). Transformation of strain PS832 with plasmid pTMY4 yielded strain PS2324, in which dacC has been disrupted; Southern blot analysis verified that the genomic structure of PS2324 was as expected (data not shown).
and PBPs were visualized with a fluorimag (Fluorimag; Vistra) as described previously (32). Identical PBP profiles were obtained for the two strains (results not shown), suggesting that PBP4a is present at levels too low to be detected in B. subtilis and/or has a low affinity for penicillin. Strain PS2324 grew and sporulated, its spores germinated at rates comparable to those of the wild-type strain, and dacC spores were as heat resistant as wild-type spores (results not shown). In addition, analysis of spore cortex structure by reversed-phase high-pressure liquid chromatography (4, 29) showed no significant structural differences between the cortices from dacC and wild-type spores (results not shown). Thus, dacC appears to be dispensable for B. subtilis under normal growth conditions.

Expression of dacC variants in E. coli. Given the lack of detection of the dacC gene product in B. subtilis, we overexpressed dacC in E. coli in order to determine if it indeed encodes a PBP. We also decided to overexpress several truncated forms of dacC-encoded protein to study their function and localization in E. coli. The four dacC-encoded variants overexpressed in E. coli are depicted in Fig. 1B. PBP4a corresponds to full-length dacC-encoded protein (491 residues), PBP4a-C is PBP4a lacking residues 470 to 491, PBP4a-N is PBP4a lacking residues 2 to 29, and PBP4a-NC is PBP4a lacking both residues 2 to 29 and 470 to 491. Residues 1 to 29 are found to constitute a cleavable signal peptide (see below), while residues 470 to 491 are predicted to form an amphipathic α-helix (data not shown) that may constitute a C-terminal membrane anchor commonly found in low-molecular-weight PBPs (12).

For PCR amplification of the regions encoding the PBP4a variants, primers (Table 2) were as follows: PBP4a, pbpy-5′ and pbpy-3′; PBP4a-C, pbpy-5′ and pbpy-6′; PBP4a-N, pbpy-P5 and pbpy-3′; and PBP4a-NC, pbpy-P5 and pbpy-P6. PCR products were ligated into pCR 2.1 (Invitrogen), and the inserts were sequenced to confirm their identity, removed by digestion with BamHI and NdeI, ligated into BamHI/NdeI-digested pET11a (42), and used to transform E. coli BL21 (DE3)/pLysS (42). The resulting E. coli strains were termed PS2599 (PBP4a), PS2690 (PBP4a-C), 2691 (PBP4a-N), and PS2692 (PBP4a-NC).

Recombinant E. coli strains were grown at 37°C to an OD600 of ~0.5 in 50 ml of 2× YT medium (per liter: 16 g of tryptone, 10 g of yeast extract, 5 g of NaCl) with chloramphenicol (20 μg/ml) and ampicillin (50 μg/ml), and IPTG was added to 0.5 mM. After 2 h of further incubation, samples (1 ml) from induced cultures were pelleted by centrifugation, and proteins were solubilized in 100 μl of SDS-sample buffer (21) and analyzed by SDS-10% PAGE. A strong 59-kDa band was present in the lanes containing proteins from induced PS2599 and PS2691, while lysates of induced PS2690 and PS2692 gave a doublet of 57 and 58 kDa (57–58-kDa doublet) and a strong 57-kDa band, respectively; these bands were not present in lysates of induced cells which carried only the vector (Fig. 3A). In some gels, the protein whose synthesis was induced in strain PS2599 also migrated as a 59–60-kDa doublet (Fig. 3B, lane 2), suggesting that PBP4a undergoes posttranslational processing, presumably removal of the signal sequence, and that the efficiency of processing varies from experiment to experiment. Although 57 to 59 kDa is larger than the theoretical molecular mass of PBP4a (52.9 kDa including the N-terminal signal peptide), the absence of any strong 57- to 59-kDa band in the extract from strain PS2602, which harbors only the vector (Fig. 3A, lane 1), strongly suggests that the 57- to 59-kDa bands are the PBP4a variants. To confirm this, the proteins on a gel run parallel to the one shown in Fig. 3A were transferred to a polyvinylidene difluoride membrane and the amino-terminal sequences of the 57- to 59-kDa bands were determined (28).

Membranes from vegetative cells of strains PS2324 (dacC) and PS832 (wild type) and cells of the same strains harvested 2 h into sporulation (t50 of sporulation) were purified and incubated with fluorescein-hexanoic-6-aminopenicillanic acid (FLU-C6-APA), proteins were separated by SDS–10% PAGE,
(for proteins migrating as a doublet, the lower band was sequenced). The sequence obtained for the major induced bands for all PBP4a variants was AEKQD, corresponding to residues 30 to 34 of PBP4a, indicating that residues 1 to 29 constitute a signal peptide. Fractionation of sonicated cells by a high-speed centrifugation method (44) showed that most (>90%) of PBP4a, PBP4a-N, and PBP4a-C were membrane associated (presumably in the inner membrane) while PBP4a-NC was present as inclusion bodies in *E. coli* (data not shown). Thus, removal of either the N-terminal signal peptide or the C-terminal putative membrane anchor did not prevent PBP4a from being membrane associated; the membrane association of PBP4a-C despite the lack of the putative membrane anchor could be due to the hydrophobic character of the protein or to expression of the protein in a heterologous system. However, removal of both of these regions resulted in loss of solubility and membrane association. In addition, removal of residues 1 to 29 at the N terminus dramatically increased the amount of PBP4a protein produced in *E. coli* (Fig. 3A, compare lanes 4 and 5 with lanes 2 and 3), while removal of residues 470 to 491 at the C terminus of PBP4a had essentially no effect on expression levels (Fig. 3A, compare lanes 2 and 3).

The PBP4a signal peptide contains three lysines within the amino-terminal six residues, a hydrophobic core region of 15 residues that terminates with a proline, and alanine residues at positions −3, −1, and +1 relative to the cleavage site. These features are similar to those of other *B. subtilis* signal peptides (26), suggesting that the PBP4a variants were processed in *E. coli* as one might expect them to be processed in *B. subtilis*.

PBP4a binds penicillin. To analyze whether recombinant PBP4a binds penicillin, membranes from induced cells were grown and induced with IPTG as described in the text, and the OD₆₀₀ (A) and viability (B) were measured after induction. The viability was measured by plating dilutions on 2× YT agar plates containing chloramphenicol (20 μg ml⁻¹) and ampicillin (50 μg ml⁻¹). Symbols, strains, and proteins they express (parentheses) are as follows: □, PS2602 (vector); ○, PS2599 (PBP4a); ◆, PS2690 (PBP4a-C); ○, PS2691 (PBP4a-N); and ●, PS2692 (PBP4a-NC).

FIG. 3. Expression of *dacC* variants and penicillin-binding activity of PBP4a. (A) Expression of *dacC* variants in *E. coli*. Recombinant *E. coli* strains were grown and induced, protein was solubilized as described in the text, and 7 μl of each sample was analyzed by SDS–10% PAGE and staining with Coomassie blue. Lanes, corresponding strains, and proteins they express (parentheses) are as follows: 1, PS2662 (vector alone); 2, PS2599 (PBP4a); 3, PS2690 (PBP4a-C); 4, PS2691 (PBP4a-N); and 5, PS2692 (PBP4a-NC). Lane MW contains molecular weight markers (molecular masses are in kilodaltons). Asterisks denote migration positions of the PBP4a variants. (B) Analysis of PBPs in membranes from induced *E. coli* strains PS2662 (lane 1; vector alone) and PS2599 (lane 2; PBP4a). Cells were grown and induced as for panel A for 90 min, 25 ml of culture was harvested by centrifugation, membranes were isolated from sonicated cells by centrifugation (100,000 × g, 1 h) and incubated for 30 min at 30°C with 100 μM FLU-C₆-APA, proteins (~10 μg) were analyzed by SDS–10% PAGE, and PBPs were visualized with a FluorimagerSI (Vistra). A lane containing labeled PBPs from vegetative *B. subtilis* cells of strain PS832 (32) is shown for comparison (lane 3; the PBPs corresponding to each band are indicated on the right). Asterisks denote position of the 59–60-kDa PBP4a doublet.

FIG. 4. Effects of PBP4a variants on growth and viability of *E. coli*. Recombinant *E. coli* strains were grown and induced with IPTG as described in the text, and the OD₆₀₀ (A) and viability (B) were measured after induction. The viability was measured by plating dilutions on 2× YT agar plates containing chloramphenicol (20 μg ml⁻¹) and ampicillin (50 μg ml⁻¹). Symbols, strains, and proteins they express (parentheses) are as follows: □, PS2662 (vector); ○, PS2599 (PBP4a); ◆, PS2690 (PBP4a-C); ○, PS2691 (PBP4a-N); and ●, PS2692 (PBP4a-NC).
strain PS2599 or PS2602 were incubated with FLU-C$_6$-APA, proteins were separated by SDS–10% PAGE, and bands were visualized by fluorimaging (Fig. 3B). A labeled 59–60-kDa doublet was present in membranes from strain PS2599 (Fig. 3B, lane 2) but not in labeled membranes from strain PS2602 harboring only the vector (Fig. 3B, lane 1), suggesting that the 59–60-kDa doublet is PBP4a. Comparison with FLU-C$_6$-APA-labeled membranes from vegetative cells of strain PS832 or from cells of the same strain harvested at t_2 of sporulation showed that recombiant PBP4a from E. coli membranes migrated at the same position as B. subtilis PBP4s (4), between PBP4 and PBP5 (Fig. 3B, lane 3, and data not shown). However, we could not detect PBP4a in membranes isolated from sporulating cells of strain PS1805, which lacks PBP4s (data not shown).

PBP4a variants affect growth and viability of E. coli. Overexpression of dacA from B. subtilis or B. steatothermophilus appears to be toxic for E. coli (10, 45). To investigate whether this was also the case for dacC, cultures of strains PS2599, PS2690, PS2691, PS2692, and the control strain PS2602 were grown to an OD$_{600}$ of 0.5 and induced with 0.5 mM IPTG (10, 45). To investigate whether this was also the case for dacA expression of PBP4a-C, or PBP4a-N revealed no dramatic effects on growth and viability of E. coli. Overexpression of dacA has no dramatic effects on growth and viability of E. coli. Overexpression of dacA has no dramatic effects on growth and viability of E. coli.

In summary, we have shown that (i) dacC expression of a sporulation regulatory gene encoding transcription factor σ^H and appears to be initiated from a promoter immediately upstream of the CoxA gene; (ii) disruption of dacC has no dramatic effects on B. subtilis growth, sporulation, and spore properties; and (iii) dacC encodes a membrane-bound PBP which is toxic when overexpressed in E. coli.

We are grateful to A. D. Grossman, P. Stragier, A. L. Sonenshein, R. Losick, and S. Meyer for B. subtilis strains.

This work was supported by a grant from the National Institutes of Health to P.S. (GM19698) and a postdoctoral fellowship from the Danish Natural Science Research Council to L.B.P. (9601026).

REFERENCES

operon required for proper spore cortex synthesis and spore core dehydra-
regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-
binding protein 4* and an apparent amino acid racemase. J. Bacteriol. 175:
2917–2925.
mutants lacking multiple class A high-molecular-weight penicillin-binding
genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase
34. Robertson, J. B., M. Gocht, M. A. Marahiel, and P. Zuber. 1989. AbrB, a
regulator of gene expression in Bacillus, interacts with the transcription
initiation regions of a sporulation gene and an antibiotic biosynthesis gene.
35. Schaeffer, P., J. Millet, and J. Aubert. 1965. Catabolite repression of bacte-
control of dacB, which encodes a major sporulation-specific penicillin-bind-
for nutritional repression of the Bacillus subtilis dipeptide permease operon.
40. Steinmetz, M., and R. Richter. 1994. Plasmids designed to alter the antibiotic
resistance expressed by insertion mutations in Bacillus subtilis, through in
protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad.
Sci. USA 87:1801–1805.
42. Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use
of T7 RNA polymerase to direct expression of cloned genes. Methods En-
zymol. 185:60–89.
43. Sun, D., R. M. Cabrera-Martinez, and P. Setlow. 1991. Control of transcrip-
tion of the Bacillus subtilis spoIII gene, which codes for the forespore-
Leaderless polypeptides efficiently extracted from whole cells by osmotic
Elgar. 1986. Reduced heat resistance of mutant spores after cloning and
mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein
46. Tognoni, A., E. Franchi, C. Magistrelli, E. Colombo, P. Cosmina, and G.
Grandi. 1995. A putative new peptide synthase operon in Bacillus subtilis:
spolIIA, a gene coding for the Bacillus subtilis σA factor. J. Bacteriol. 173:
521–529.
subtilis sporulation operon that includes genes for an RNA polymerase α