Availability of O₂ as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

TANJA ARRAS, JAN SCHIRAWSKI, AND GOTTFRIED UNDEN*
Institut für Mikrobiologie und Weinforschung, Universität Mainz, 55099 Mainz, Germany

Received 5 December 1997/Accepted 17 February 1998

The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O₂ tension [pO₂] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O₂ (corresponding to 7 to 8 μM O₂) (1 bar = 10⁵ Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O₂), the diffusion of O₂ into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O₂ diffusion rates. Below 10 mbar of O₂, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O₂ into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O₂. The consequences of this finding for the availability of O₂ as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed.

During aerobic growth, bacteria consume O₂ at high rates. The consumption of O₂ by oxidases takes place on the cytoplasmic side of the membrane. Since the diffusion of O₂ across the membrane is rapid, the supply of the oxidases with O₂ is guaranteed even at the very low O₂ tensions which are sufficient for aerobic growth (<1 mbar of O₂) (2, 4, 15, 16). Previoulsy, the rate of O₂ diffusion into the cytoplasm of Escherichia coli was calculated from the cell dimensions and the diffusion coefficients and compared to the rates of O₂ consumption (2, 21, 22). It was estimated that at O₂ tensions as low as 0.2 mbar of O₂ (corresponding to 0.2 μM O₂), the supply of O₂ by diffusion exceeds the consumption by respiration. In agreement with this calculation, in E. coli the fermentation pathways were synthesized and used only at partial O₂ tension (pO₂) values well below 1 mbar of O₂ (3). Thus, O₂ is able to reach the active sites of the oxidases at rates sufficient to support aerobic respiration even at very low O₂ tensions.

The O₂ supply of the cytoplasmic space is not known and might be different from that of the membrane where the oxidases are located. From the diffusional parameters and the cell dimensions, it was calculated that the concentrations of O₂ should be the same within and outside the bacteria at O₂ tensions as low as 1 mbar of O₂ (21, 22). Therefore, we aimed for an experimental proof of the availability of O₂ in the bacterial cytoplasm under aerobic and microaerobic conditions.

For the degradation of aromatic compounds like benzoate, oxygenases are required for oxidative cleavage of the aromatic ring (7, 10). Due to the cytoplasmic location of the oxygenases and the need for molecular oxygen as a cosubstrate, the turnover of aromatic compounds depends on the availability of O₂ in the cytoplasm. The rate of metabolism of aromatic compounds therefore provides information on the minimal rate of O₂ diffusion into the cytoplasm. To this end, the relation of metabolism of various aromatic compounds to the pO₂ of the medium was studied. Pseudomonas putida KT2442 degrades benzoate by benzoate-1,2-dioxigenase and catechol-1,2-dioxigenase (ortho pathway), whereas 4-hydroxybenzoate is degraded via 4-hydroxybenzoate monoxygenase and protocatechuate-3,4-dioxigenase (ortho cleavage). 4-Methylbenzoate is metabolized by P. putida mt-2 by toluate-1,2-dioxigenase and catechol-2,3-dioxigenase (meta cleavage) (5, 8). The Kₘ values for O₂ of the oxygenases (≥7 μM) (1, 6, 12, 13) are much higher than those of the oxidases (<0.1 μM) (4, 15, 16). Therefore, limitation of growth or catabolism by O₂ must be due to the oxygenases, and information on O₂ diffusion into the cytoplasm and the O₂ concentration in the cytoplasm can be drawn from the growth-limiting pO₂ values. Here we report on experimental proof of the availability of O₂ in the cytoplasm. This finding also provides a basis for our understanding of the O₂ sensing by cytoplasmic O₂ sensor proteins like FNR (fumarate nitrate reductase regulator) from E. coli (9, 19, 22, 23) and the homologous proteins from Pseudomonas (17, 25) which are supposed to react directly with O₂ in the cytoplasm (2, 22, 23).

MATERIALS AND METHODS

Bacteria and media. P. putida KT2442 and P. putida mt-2(pWWO) were provided by L. Wagner-Doblet (Braunschweig, Germany) and M. Scholman (Stuttgart-Hohenheim, Germany) (5, 24). P. putida KT2442 was grown in a modified M9 mineral medium (pH adjusted to 7.1) supplemented with a mineral salts solution and with glucose, succinate, benzoate, or 4-hydroxybenzoate (10 mM each) as sources of carbon and energy. The mineral salts solution was a combination of the following: solution 1, containing 25.39 g of MgCl₂·2.0 g of MgSO₄·7H₂O, 0.16 g of CaSO₄·7H₂O, 0.85 g of MnSO₄·H₂O, 1.44 g of ZnSO₄·H₂O, 0.25 g of CuSO₄·5H₂O, 0.16 g of CaSO₄·0.5H₂O, and 0.02 g of H₂BO₃ dissolved in 51.3 ml of concentrated HCl and with water added to 100 ml; solution 2, containing 360 mM FeSO₄·7H₂O; and solution 3, containing 1 M MgSO₄. Solutions 1 and 2 were filter sterilized, and solution 3 was autoclaved. Then 50 ml of solution 1, 2.5 ml of solution 2, 25 ml of solution 3, and 22.5 ml of autoclaved H₂O were combined. The medium was supplemented with 0.25 ml of the resulting mineral salts solution per 100 ml. P. putida mt-2(pWWO) was grown in a phosphate-buffered medium (14.0 g of Na₂HPO₄·12H₂O, 2.0 g of KH₂PO₄ per liter) supplemented with a salts solution (20 ml/liter of medium) containing 2.5 g of Ca(NO₃)₂·4H₂O (autoclaved separately) per liter, 0.5 g of Fe(III)NH₄citrate per liter, 10 g of MgSO₄·7H₂O per liter, 50 g of (NH₄)₂SO₄.

* Corresponding author. Mailing address: Institut für Mikrobiologie und Weinforschung, Universität Mainz, 55099 Mainz, Germany. Phone: 49-6131-393550, Fax: 49-6131-392695, E-mail: under@mxmdza.zdv.uni-mainz.de.
per liter, and 50 ml of the Pfennig SL6 metal salts solution (14) per liter. The C source for *P. putida* mt-2 was 4-methylbenzoate (10 mM). *E. coli MC4100* (18) was grown in M9 medium (11) supplemented with an amino acid mixture (20) and glucose (10 mM) or succinate (10 mM).

Growth. *P. putida* was grown at 30°C. Growth under anaerobic conditions was performed in sealed bottles under an atmosphere of nitrogen (2, 3). For aerobic conditions, the bacteria were grown in Erlenmeyer flasks filled to within 10% of the maximal volume under vigorous shaking (3). The medium was inoculated from cultures grown overnight under aerobic conditions in the mineral medium (same C source as that in the main culture) to an *A*$_{578}$ not higher than 0.06.

Growth in an oxystat. Growth at defined O$_2$ tensions (pO$_2$) was performed in an oxystat (chemostat with constant pO$_2$) (BioStat MD; Braun, Melsungen, Germany) in batch culture (1.5 liters) with constant stirring (400 rpm) (2, 3). The pO$_2$ value of the medium was measured continuously with an O$_2$ electrode. The pO$_2$ was maintained at a constant level by supplying air (valve I) and N$_2$ (valve II) with 6.5 mM H$_2$SO$_4$ as the eluent (flow rate, 0.55 ml min$^{-1}$). The substances were analyzed by high-performance liquid chromatography (HPLC) on an Aminex HPX87H column (300 by 7.8 mm; Bio-Rad) with 6.5 mM H$_2$SO$_4$ as the eluent (flow rate, 0.55 ml min$^{-1}$) as described previously (20). The following substrates and products were determined and quantified with standard solutions by a refractive index and by a UV light detector (215 nm): glucose, glycerol, acetate, ethanol, formate, pyruvate, fumarate, succinate, and lactate. Benzoate (retention time $t_R = 68$ min), 4-hydroxybenzoate ($t_R = 51$ min), catechol ($t_R = 32.0$ min), and protocatechuate ($t_R = 33.3$ min) were identified by the R_t values of authentic substances, and the ratio of the refractive index/UV absorption at 215 nm was used to confirm the identities.

RESULTS AND DISCUSSION.

Growth of *P. putida* on aromatic compounds at limiting pO$_2$.

P. putida was grown on nonaromatic and aromatic substrates like glucose, succinate, and benzoate in an oxystat at defined pO$_2$ values. In the oxystat, the set pO$_2$ values could be maintained constant for the duration of the growth experiment. With glucose or succinate as the substrate, the growth behavior changed only when the pO$_2$ fell below 10 mbar of O$_2$ (corresponding to about 10 µM O$_2$). At lower pO$_2$ values, the growth rate and final cell density decreased, and under anaerobic conditions, no growth was observed. With benzoate or 4-hydroxybenzoate as the substrate, under aerobic conditions (212 mbar of O$_2$; air saturation), growth of *P. putida* (Fig. 1A) was similar to that on glucose or succinate. However, with decreasing pO$_2$ values, growth rate and yield decreased significantly.

In Fig. 1B, the rate constants for growth on aromatic and nonaromatic substrates are plotted versus the pO$_2$ values. With glucose and succinate, growth of *P. putida* commenced at very low pO$_2$ values and showed a saturation curve with increasing pO$_2$. With the aromatic substrates benzoate and 4-hydroxybenzoate, growth started only at pO$_2$ values above 4.2 mbar. With 4-methylbenzoate, the O$_2$ requirement was even higher (data not shown). The maximal growth rates for succinate and benzoate corresponded to doubling times of 46 and 51 min, respectively. When *E. coli* was grown on succinate or glucose, the growth rates increased immediately from 0 mbar, similar to the growth rates of *P. putida* on the same substrates (data not shown). For growth on glucose, however, the growth rates did not drop to zero at 0 mbar of O$_2$ due to the presence of fermentative growth. Thus, the growth rate at 0 mbar of O$_2$ ($\mu = 0.011$ min$^{-1}$) was about half that of *E. coli* grown under aerobic conditions on glucose ($\mu = 0.020$ min$^{-1}$).

pO$_{0.5}$ values for growth on aromatic substrates are higher than those for growth on nonaromatic substrates.

For *P. putida*, the ratio of the growth rates to the pO$_2$ values, the pO$_{0.5}$ values for the substrates can be determined. The pO$_{0.5}$ value corresponds to the pO$_2$ value yielding half-maximal growth rates (2, 3). The measured pO$_{0.5}$ values can be classified into two groups. For growth of *P. putida* and *E. coli* on glucose and succinate, low values (pO$_{0.5} \leq 2$ mbar of O$_2$) were found. For growth on aromatic compounds, the pO$_{0.5}$ values were distinctly higher and corresponded to about 8 mbar for growth on benzoate and 4-hydroxybenzoate and to 19 mbar for growth on 4-methylbenzoate.

Excretion of intermediates under O$_2$ limitation.

The growth medium was analyzed for products or intermediates excreted by the bacteria during growth in the oxystat at different pO$_2$ values (Fig. 2). The medium was analyzed by HPLC for the presence of organic acids, alcohols, sugars, and aromatic compounds, in particular for intermediates of the respective metabolic routes. During growth at high oxygen tensions, all types of substrates were completely oxidized by *P. putida* and no organic end products were detected in significant amounts (>0.05 mol/mol of substrate). From glucose and succinate, no end products were excreted even at decreased oxygen tensions,
indicating complete oxidation. When *P. putida* KT2442, however, was grown on benzoate, a product was found in the medium at oxygen tensions below 20 mbar which was identified as catechol. Catechol is an intermediate of the *ortho* cleavage pathway of benzoate. Up to 0.65 mol of catechol per mol of benzoate was measured, indicating a severe limitation in the *ortho* cleavage pathway resulting in the excretion of the intermediate without complete oxidation. During growth on 4-hydroxybenzoate, protocatechuate was excreted in large amounts (0.28 mol/mol of 4-hydroxybenzoate) at oxygen tensions below 20 mbar. Obviously, limitation of protocatechuate-3,4-dioxygenase activity (6) by low O2 tensions causes accumulation and excretion of the intermediate protocatechuate. Therefore, in both pathways, central steps, i.e., the dioxygenases reacting on catechol and protocatechuate, are limiting under microaerobic conditions.

Availability of O2 as an intracellular substrate for aromatic substrate degradation. The data can be used to roughly estimate the rate of O2 diffusion into the cells required for this process. The rate of O2 consumption by the oxygenases in the cell interior (v/O2,int) is twice the rate of benzoate metabolism (v/benzoate) (Table 1) corresponding to 0.22 mmol of benzoate · min⁻¹ · g (dry weight)⁻¹ and 0.44 mmol of O2 · min⁻¹ · g (dry weight)⁻¹. The calculated rate of O2 diffusion into the cells under aerobic conditions, 360 mmol of O2 · min⁻¹ · g (dry weight)⁻¹ (Table 1), exceeds the rate of intracellular O2 consumption by the oxygenases by 3 orders of magnitude.

Plotting the rates of growth on benzoate as a function of the pO2 shows that diffusion of O2 is not limiting under aerobic or microaerobic conditions (Fig. 3). Growth is limited apparently only at pO2 values below 10 mbar of O2. The growth limitation coincides with the excretion of the oxygenase substrates catechol and protocatechuate, demonstrating that oxygenation is the growth-limiting step. At 10 mbar of O2, the calculated diffusion is still higher by 2 orders of magnitude than the O2 consumption by the oxygenases (Fig. 3). Therefore, the decrease in the growth rate is presumably not caused by limiting O2 diffusion but by the high Km value (20 μM) of the oxygenase (Table 1). Thus, at pO2 values as low as 10 mbar, there is substantial O2 present in the cytoplasm. The high Km values of the oxygenases prevented an analysis of the situation at lower pO2 values. The calculation of the diffusion rates for O2, however, also suggests that at distinctly lower oxygen tensions,

TABLE 1. Metabolic and energetic parameters for growth of *P. putida* on benzoate

<table>
<thead>
<tr>
<th>Parameter or data</th>
<th>Value</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal growth rate on benzoate (μmax) (min⁻¹)</td>
<td>0.0136</td>
<td>Fig. 1B</td>
</tr>
<tr>
<td>Molar growth yield on benzoate (Ybenzoate) [g (dw) · mol⁻¹]</td>
<td>62</td>
<td>Fig. 1A</td>
</tr>
<tr>
<td>pO2 for half-maximal growth rate (μM)</td>
<td>8.2</td>
<td>This work</td>
</tr>
<tr>
<td>Km, (catechol-1,2-dioxygenase) (μM O2)</td>
<td>20</td>
<td>1, 12</td>
</tr>
<tr>
<td>Calculated data [mmol · g (dw)⁻¹]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoate consumption at μmax (vbenzoate)</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Intracellular O2 consumption (oxygenases, vOxy)</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Intracellular O2 consumption (oxygenases plus oxidases, vOxy,size)</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>Maximal rate of O2 diffusion into P. putida cells</td>
<td>360</td>
<td>2, 21</td>
</tr>
</tbody>
</table>

* g (dw), grams (dry weight).

* Based on the growth reaction (1 benzoate + 7.5O2→7CO2 + 3H2O).
down to 1 mbar of O₂, the intracellular pO₂ equals the extra-
cellular pO₂ (2, 21, 22). The O₂ present under aerobic and
microaerobic conditions most likely is also used as the signal
for O₂ sensor-regulator proteins like FNR from E. coli (9, 22)
and homologous proteins from Pseudomonas strains (17, 25)
which are thought to react directly with O₂ in the cytoplasm (2,
23). The regulatory pO₂,5 which causes a switch from active
(an aerobic) to inactive (anaerobic) FNR is in the range of 1 to 5
mbar of O₂ in the external medium for many target genes,
which is in good agreement with the results found in the
present work.

ACKNOWLEDGMENTS

We are grateful to Deutsche Forschungsgemeinschaft and the Fonds
der Chemischen Industrie for financial support, to D. Vlad for HPLC
analysis, and to I. Wagner-Döbler (Braunschweig, Germany) and M.
Schlömann (Stuttgart-Hohenheim, Germany) for supplying strains.

REFERENCES

KG, Berlin, Germany.
regulatory signal for FNR-dependent gene regulation in Escherichia coli. J.
O₂ tensions for the synthesis of fermentation products in Escherichia coli and
oxidase in Escherichia coli has an extremely high oxygen affinity and two
oxygen-binding haems: implications for regulation of activity in vivo by ox-
1981. Molecular and functional analysis of the TOL plasmid pWWO from
Pseudomonas putida and cloning of genes for the entire regulated aromatic
6. Fujisawa, H. 1970. Protocatechuate 3,4-dioxygenase (Pseudomonas). Meth-
in aquatic microcosms of a genetically engineered pseudomonad applicable
Kiley. 1996. DNA-binding and dimerization of the Fe-S-containing FNR
protein from Escherichia coli are regulated by oxygen. J. Biol. Chem. 271:
2762–2768.
Laboratory, Cold Spring Harbor, N.Y.
1996. A high-affinity chbI-type cytochrome oxidase terminates the symbiosis-
specific respiratory chain of Bradyrhizobium japonicum. J. Bacteriol. 178:
1532–1538.
124.
17. Sawers, R. G. 1991. Identification and molecular characterization of a trans-
scriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural
and functional similarity to the FNR protein of Escherichia coli. Mol.
Microbiol. 5:1469–1481.
proton-pumping NADH dehydrogenase I of Escherichia coli in NADH—fumarate respiration and bioenergetic implications. Eur. J. Bio-
chem. 244:155–160.
regulated gene expression in facultatively anaerobic bacteria. Antonie Leeu-
wenhoek 66:3–23.
1995. O₂-sensing and O₂-dependent gene regulation in facultatively anaer-
regulator FNR of Escherichia coli: the search for signals and reactions. Mol.
ation of aquatic sediment microcosms and their use in assessing effects on
introduced microorganisms on ecosystem parameters. Appl. Environ. Mi-
crobiol. 58:1249–1258.
obic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr,
5:1483–1490.