The Type 2 Capsule Locus of *Streptococcus pneumoniae*

FRANCESCO IANNELLI, BARBARA J. PEARCE,† AND GIANNI POZZI*

Sezione di Microbiologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy

Received 12 August 1998/Accepted 29 January 1999

The type 2 capsule locus of *Streptococcus pneumoniae* was characterized in Avery’s strain D39, which is the parent strain of the standard transformation recipients currently used in pneumococcal research and is largely used as a virulent strain in studies on the pathogenesis of pneumococcal infections. The capsule locus was sequenced by using a 21.7-kb PCR fragment from the D39 genome as a template. Sequence data analysis showed the presence of 18 open reading frames, 17 of which have the same direction of transcription and all of which are potentially involved in capsule biosynthesis. It was also shown that R36A and R6, which are unencapsulated (rough) derivatives of D39, carry a 7,504-bp deletion involving nine capsule genes.

Streptococcus pneumoniae (pneumococcus) is an important human pathogen that causes such bacteremic infections as pneumonia, bacteremia, and meningitis, resulting in high mortality rates even when treated with antimicrobials (4). The polysaccharide capsule is the major pathogenicity determinant of *S. pneumoniae*, and its presence is a conditio sine qua non of pneumococcal virulence. The capsular polysaccharide varies from strain to strain, and 90 different capsular serotypes have been recognized (14). Transformation-mediated exchange of capsular genes has long been known to occur in the pneumococcus (5), but only recently has information on the genes involved in capsule biosynthesis begun to accumulate. Nucleotide sequence data is now available for a limited number of types, including 1, 3, 14, 19B, 19F, and 23F (3, 8, 9, 18, 20–22). Capsular transformation has been shown to occur in vivo, and it is believed to play a role both in the spread of drug-resistant clones and in the long-term efficacy of vaccines based on a limited number of serotypes (8, 24).

The type 2 capsular polysaccharide is composed of singly branched hexasaccharide repeating units, each containing one D-glucuronic acid, two D-glucose, and three L-rhamnose residues (Fig. 1) (16). In this work we determined the nucleotide sequences of the genes involved in type 2 polysaccharide biosynthesis in Avery’s strain D39 (5), which is the parent of the standard transformation recipients currently used in pneumococcal research and is largely used as a virulent strain in studies on the pathogenesis of pneumococcal infections (6). We also characterized the deletion which occurred in the capsule locus of D39 when the unencapsulated transformable strain R36A was generated (5). Since capsular genes are in a chromosomal region of the type 2 strain D39 where the unencapsulated transformable strain R36A was generated (5), since capsular genes are in a chromosomal locus between genes *dexB* (11) and *aliA* (*plpA*) (1, 25) in all types studied so far (3, 8, 9, 18, 20–22), we proceeded to sequence the DNA between *dexB* and *aliA* in the type 2 strain D39.

Sequencing and sequence analysis. To avoid problems encountered when trying to clone pneumococcal DNA in *Escherichia coli* (7, 10, 19), the type 2 capsule locus was sequenced by using a 21.7-kb PCR fragment obtained by using primers designed on *dexB* and *aliA* as a starting template (Fig. 2). The method for direct sequencing of long PCR fragments from the pneumococcal genome has already been described in detail (15). Gapped BLASTX software (2) was used to translate the sequences of both strands of DNA in all six reading frames and to conduct homology searches of the nucleotide and protein databases available at the National Center for Biotechnology Information. The compilation and analyses of the sequences were carried out with Dnasis version 3.6 software (Hitachi, San Bruno, Calif.) and the Wisconsin Sequence Analysis Package (Genetics Computer Group, Madison, Wis.).

Genetic organization of the type 2 capsule locus. Sequence data analysis showed the presence of 18 open reading frames (ORFs), 17 of which have the same direction of transcription and all of which are potentially involved in capsule biosynthesis. As for other serotypes, the 17 type 2 capsule genes are apparently arranged in a single transcriptional unit, with a promoter-like sequence located immediately upstream of *cps2A* (−35, nucleotides 1403 to 1408; −10, nucleotides 1426 to 1431), 100% identical to that proposed for the type 19F capsule operon (12). Stem-loop structures resembling transcription terminators are present downstream of *dexB* (nucleotides 387 to 444) and downstream of the last capsular gene, *cps20* (nucleotides 19742 to 19832). Between the *dexB* transcription terminator and the capsule operon promoter, there is a 327-bp ORF (*orf1*) oriented opposite to the *cps2* genes (Fig. 2). The *orf1* gene product is similar to several transposases of the *Synechocystis* sp. genome (GenBank accession no. D90915) and is probably part of an insertion sequence present seven times in the type 4 pneumococcal genome (15a). Interestingly, *orf1* occupies the same positions in the capsule loci of types 1 (GenBank accession no. Z83335), 4, and 19F (GenBank accession no. AF030367).

The *cps2* genes. Type 2 capsule genes are named according to the nomenclature adopted for types 19F (12, 21) and 23F (GenBank accession no. AF030373). Comparison of sequence data shows that the first four genes, *cps2A* through *D*, have a very high similarity to the corresponding genes present in the capsule loci of other serotypes. The putative functions of these genes are given in Fig. 2.

![Fig. 1. Structure of the repeating unit of the type 2 capsular polysaccharide of *S. pneumoniae* (16). Glc, glucose; Rha, rhamnose; GlcA, glucuronic acid.](http://jb.asm.org/)
common genes have been already discussed in detail by other authors (11, 12, 17). The central portion of the locus is occupied by seven genes \((cps2E, cps2T, \text{and} \, cps2F \text{through} \, -J)\) encoding five putative glycosyltransferases, a polysaccharide polymerase, and a repeat unit transporter (Table 1). The conversion of glucose to glucuronic acid is probably catalyzed by the \(cps2K\) gene product, since it is homologous to the type 1 (89% similarity) and type 3 (74% similarity) UDP-glucose dehydrogenases. The \(csp2P\) gene is unique to the type 2 locus, and its gene product shows similarity to the UDP-galactopyranose mutases of many microorganisms, including \(E.\) coli (67% similarity) (23) and \(Mycobacterium\) \(tuberculosis\) (58% similarity). The four genes involved in dTDP-rhamnose biosynthesis (\(csp2L\) through \(-O)\) are located at the 3' end of the locus and show a very strong similarity (up to 99% amino acid identity) to the corresponding genes of types 19F, 23F, and 1 (cryptic genes) (21, 22). The coding sequences of both \(cps2J\) and \(cps2P\) start with a TTG codon, as previously observed for other pneumococcal \(cps\) genes (21).

Deletion in rough strains R36A and R6. R36A is an unencapsulated (rough) derivative of D39 obtained by growing D39 in the presence of anti-type 2 rabbit serum for 36 serial passages. This strain is used as a transformation recipient and has never been found to revert to capsule production (5). R6 is a subclone of R36A selected in the 1950s for continued competence and used since in many laboratories (28). Sequence analyses of the \(cps\) loci in R36A and R6 showed a 7,504-bp deletion corresponding to nucleotides 2358 through 9862 of the D39 capsule locus (Fig. 2) with a 25-bp insertion of an inverted portion of \(csp2A\) (nucleotides 2502 through 2526). The deletion involves the 3' end of \(cps2A\), the 5' end of \(cps2H\), and seven other whole genes (Fig. 2).

The data reported here are important not only because they add to the knowledge of the genetic variability within the

TABLE 1. Homologies of type 2 capsule genes with other bacterial genes

<table>
<thead>
<tr>
<th>Type 2 gene</th>
<th>Homologous gene</th>
<th>Origin species or (S.) (pneumoniae) type</th>
<th>Proposed function of gene product</th>
<th>Amino acid identity and similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cps2E)</td>
<td>(cps23fE)</td>
<td>Type 23F</td>
<td>Undecaprenyl-phosphate glucose-1-phosphate transferase</td>
<td>95, 96</td>
</tr>
<tr>
<td>(cps14E)</td>
<td>Type 14</td>
<td>Glucosyl-1-phosphate transferase</td>
<td>60, 79</td>
<td></td>
</tr>
<tr>
<td>(cps19fE)</td>
<td>Type 19F</td>
<td>Uridine diphosphate glycosyltransferase</td>
<td>60, 78</td>
<td></td>
</tr>
<tr>
<td>(cps2T)</td>
<td>(cps23fT)</td>
<td>Type 23F</td>
<td>Rhamnosyl transferase</td>
<td>81, 88</td>
</tr>
<tr>
<td>(cps2F)</td>
<td>Type 23F</td>
<td>Galactosyltransferase</td>
<td>23, 50</td>
<td></td>
</tr>
<tr>
<td>(cps14J)</td>
<td>Type 14</td>
<td>ss-1,4-galactosyltransferase</td>
<td>19, 46</td>
<td></td>
</tr>
<tr>
<td>(cps14H)</td>
<td>Type 14</td>
<td>ss-1,3-N-acetylgalcosaminyltransferase</td>
<td>18, 43</td>
<td></td>
</tr>
<tr>
<td>(cps2G)</td>
<td>Sequence encoding protein RPN00103</td>
<td>Type 4</td>
<td>Undecaprenyl-phosphate galactosephosphotransferase</td>
<td>35, 55</td>
</tr>
<tr>
<td>(icsA)</td>
<td>Neisseria meningitidis</td>
<td></td>
<td>Lipopolysaccharide glycosyltransferase</td>
<td>19, 48</td>
</tr>
<tr>
<td>(cps2H)</td>
<td>(cps23fI)</td>
<td>Type 23F</td>
<td>Polysaccharide polymerase</td>
<td>22, 52</td>
</tr>
<tr>
<td>(cps14H)</td>
<td>Type 14</td>
<td>Polysaccharide polymerase</td>
<td>21, 51</td>
<td></td>
</tr>
<tr>
<td>(cps19fJ)</td>
<td>Type 19F</td>
<td>Polysaccharide polymerase</td>
<td>20, 50</td>
<td></td>
</tr>
<tr>
<td>(cps2I)</td>
<td>(N.) (meningitidis)</td>
<td></td>
<td>Alpha 1,2 N-acetylgalcosamine transferase</td>
<td>25, 52</td>
</tr>
<tr>
<td>(icsA)</td>
<td>(N.) (meningitidis)</td>
<td></td>
<td>Lipopolysaccharide glycosyltransferase</td>
<td>24, 52</td>
</tr>
<tr>
<td>(cps2J)</td>
<td>(cps23fJ)</td>
<td>Type 23F</td>
<td>Repeat unit transporter</td>
<td>36, 63</td>
</tr>
<tr>
<td>(cps14L)</td>
<td>Type 14</td>
<td>Repeat unit transporter</td>
<td>20, 49</td>
<td></td>
</tr>
</tbody>
</table>

* GenBank accession numbers: \(cps2f\), AF030373; \(cps14\), X85787; \(cps19f\), U09239; \(icsA\), U39810; and \(rfaK\), U58765. Preliminary sequence data for the type 4 pneumococcal genome was obtained from The Institute for Genomic Research (15a). Annotation for the type 4 genome was obtained from reference 28a.
capsule locus of *S. pneumoniae* but also because they describe a genetic locus responsible for a crucial phenotype (smooth versus rough) of the most used bacterial strains in pneumococcal research. Since Avery’s time, R36A and its derivatives have been used as recipients in transformation experiments in all laboratories working on the genetics of *S. pneumoniae*.

Nucleotide sequence accession number. The nucleotide sequence of the type 2 capsule locus of D39 is assigned GenBank accession no. AF026471, and the deletion mapped in R36A and R6 has been assigned accession no. AF029568.

This work was supported in part by grants from GlaxoWellcome Verona, M.U.R.S.T. (60%), and CNR (P. F. Biotecnologie, contract 97.01185.PF49).

We thank Marco Oggiene for helpful advice, James Paton for critically reading the manuscript, and Lorenzo Morelli and Marisa Callegar for gracious hospitality at the CRB sequencing facility (Cremona, Italy).

REFERENCES

