A Genetic Mechanism for Deletion of the ser2 Gene Cluster and Formation of Rough Morphological Variants of Mycobacterium avium

TORSTEN M. ECKSTEIN, JULIA M. INAMINE, MARKUS L. LAMBERT, AND JOHN T. BELISLE*

Mycobacterium Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523-1677

Received 3 May 2000/Accepted 10 August 2000

Mycobacterium avium and Mycobacterium intracellulare comprise what is commonly referred to as the M. avium complex (MAC) (20). These bacteria are opportunistic pathogens and primary etiological agents of disseminated bacterial infections in patients in advanced stages of AIDS (13). MAC infections in these individuals are associated with an increased risk of death (8), and such infections are difficult to treat due to the innate resistance of the MAC to many common antimycobacterial drugs (13). A complicating factor in studying pathogenic mechanisms of the MAC is the high degree of genetic and phenotypic variability observed among strains (3, 28, 35). The most noted of these mutable phenotypic traits is the ability of MAC strains to produce three distinct colony morphologies: smooth transparent (SmT), smooth opaque (SmO), and rough (Rg) (16, 41). In vivo and in vitro models of infection demonstrate that SmT variants are highly virulent and SmO variants are avirulent (30, 31, 32, 38). However, Rg variants are reported to be either highly virulent or avirulent (30, 31, 32), suggesting that at least two forms of Rg morphological variants exist.

Early studies addressing the chemical basis of colony morphology in MAC strains revealed that Rg variants are devoid of the characteristic glycopeptidolipids (GPLs) (1) on the surface of SmO and SmT variants (2). More recently, detailed chemical analyses of M. avium serovar 2 strain 2151 demonstrated that two chemotypes of Rg variants are formed: one that is C. parvum (4). Additionally, the formation of these Rg chemotypes is associated with large genomic deletions (4). Specifically, Rg-1-type organisms arise through a deletion of the M. avium ser2 gene cluster, the genomic region encoding glycosylation of the ser2-specific GPL (4, 6, 29), whereas the deletion associated with Rg-4-type organisms maps to a region downstream of the ser2 gene cluster and presumably encompasses the genes encoding lipopeptide biosynthesis (4). Partial characterization of these deletions also led to the hypothesis that excision of the ser2 gene cluster (Rg-1) is mediated by recombination between homologous 2.8-kb ClaI fragments on either side of ser2 (4). However, the sequence of the 2.8-kb ClaI repeats and the precise mechanism of the deletion were not elucidated. Our current studies demonstrate that the ser2 gene cluster of M. avium 2151 SmO/SmT is flanked on either side with identical copies of a novel 4.3-kb insertion sequence (IS601) oriented as direct repeats. PCR amplification and sequencing of the genomic site of the ser2 deletion in M. avium 2151 Rg-1 and 10 independently derived Rg colony variants indicate that the ser2 gene cluster of M. avium 2151 is usually deleted via homologous recombination between direct repeats of IS601.

MATERIALS AND METHODS

Isolation of new rough colony variants, bacterial growth, and DNA isolation. Additional Rg colony variants were isolated by spreading approximately 10^3 CFU of M. avium strain 2151 SmT and SmO (4) on plates (15 by 150 mm) of Middlebrook 7H11 agar (Difco Laboratories, Detroit, Mich.) containing 10% oleic acid–albumin–dextrose–catalase supplement (7H11-OADC) (10). After 2 weeks of incubation at 37°C, the plates were evaluated for the presence of Rg colony variants. Individual Rg colonies were picked and passed at least three times on 7H11-OADC plates to ensure morphological stability.

For DNA isolation, frozen stocks of M. avium serovar 2 strain 2151 Rg-1 (4) and 15 Rg colony variants were plated on 7H11-OADC medium. After 2 weeks of growth at 37°C, single colonies were used to inoculate Middlebrook 7H9 broth (Difco) containing 10% OADC. The 10-ml cultures were incubated with mild agitation for 1 week and scaled up to 150 ml of 7H9 broth, and at 2 weeks of growth the cells were harvested by centrifugation at 3,000 × g for 30 min. Genomic DNA was isolated from the cell pellets by minor modifications of the method of Belisle et al. (6). Briefly, the procedure involved cell lysis by treatment with lysozyme, proteinase K, and sodium dodecyl sulfate, followed by extraction with phenol-CHCl3-isooamy alcohol (25:24:1) and CHCl3-isooamy alcohol (24:1) prior to DNA precipitation. The DNA pellet was washed three times with 70% cold ethanol, dried, and dissolved in sterile H2O.

Escherichia coli strain DH5α (Life Technologies Gibco-BRL, Rockville, Md.)
was used for propagation of all recombinant plasmids. Cells were grown with Luria-Bertani medium, and ampicillin (100 μg/ml) was added for the growth of recombinant E. coli clones. Transformation-competent cells of E. coli DH5α were generated as described by Sambrook et al. (3). Recombinant plasmids were isolated using the QiAprep Spin Miniprep kit (Qiagen, Valencia, Calif.) unless otherwise noted. Recombinant plasmids pTB232.1 and pTB233.1 were derived from pTB232 and pTB233 (4), respectively, by subcloning the 2.8-kb ClaI fragments. For further sequencing up- and downstream of pJTB232.1, the 9.6-kb HindIII-DraI fragment of cosmid pJTB232 (Fig. 1) was cloned into the Smal and HindIII sites of the vector to give plasmid pTB232.2. To sequence the flanking region of pJTB233.1, the 7.9-kb HindIII fragment of cosmid pJTB230 (Fig. 1), which is similar to pJTB233 (4), was used to generate plasmid pTB233.1. Subclones of pTB232.2 and pTB230.1 for DNA sequencing were generated with Clal, EcoRI, EcoRV, Smal, PstI, XhoI, and NotI (Life Technologies).

PCR analyses. Primers P1 (5′-CCGTCGACCTAGTCTTTAG-3′), P2 (5′-CAGAGCGCGAGAACTAATACG-3′), P3 (5′-GCAATTGCGGAAGGATTAG-3′), and P4 (5′-GAGTCTCGCCACGACG-3′) were synthesized by the Macromolecular Resources Facility at Colorado State University. All PCR amplifications were performed using a 2400 GeneAmp PCR System (Perkin-Elmer, Norwalk, Conn.) and Vent polymerase (New England Biolabs, Beverly, Mass.) or Taq polymerase (Life Technologies). The PCR program used with the above primers was 25 cycles of 94.0°C for 30 s, 63.0°C for 1.5 min, and 72.0°C for 1 min. Prior to the first cycle, the starting temperature of 94.0°C was held for 5 min, and at the end of the last cycle, a temperature of 72.0°C was held for 7 min. PCR amplification of the rfaA gene of M. avium was performed as previously described by Eckstein et al. (12). PCR products were resolved on a 0.8% agarose gel and stained with ethidium bromide.

DNA sequencing. DNA sequencing of pTB232.1, pTB233.1, pTB232.2, and pTB230.1 (and their appropriate subclones) was performed with the pBluescript II SK(-) (Stratagene, La Jolla, Calif.) and the ends of the fragments were sequenced with T7 and SP6 primers. Sequencing of DNA was performed by the Macromolecular Resources Facility at Colorado State University or by the Department of Molecular, Cellular, and Developmental Biology at the University of Colorado in Boulder. DNA sequences, open reading frames (ORFs), and codon usage were determined with Sequencher 3.0 software (Gene Codes Corporation, Ann Arbor, Mich.) and FramePlot 2.3beta (http://www.ncbi.nlm.nih.gov/∼jim/cg-bin/frameplot-2.3b.pl) (22).

Nucleotide sequence accession number. The sequence of IS1601 is available on GenBank at AF060182.

RESULTS

Two identical repetitive elements flank the ser2 gene cluster as direct repeats. It was previously demonstrated using restriction endonuclease mapping and Southern blot hybridization that the ser2 gene cluster of M. avium 2151 SmO/SmT is flanked by 2.8-kb ClaI fragments and that the genomic region bracketed by these putative repetitive sequences had been deleted in the Rg-1 chemotype (4). To determine if these fragments were truly repetitive elements, the ClaI fragments were cloned, and DNA sequencing demonstrated that the left and right 2.8-kb ClaI fragments were identical. The complete sequence of these repetitive elements beyond the 2.8-kb ClaI fragments was determined by subcloning a 9.6-kb DraI-HindIII fragment containing the left 2.8-kb ClaI region and a 7.9-kb HindIII fragment containing the right 2.8-kb ClaI region from pTB232.2 and pTB230 (4), respectively (Fig. 1). The DNA sequence revealed that the full length of the repetitive element is 4,262 bp and that the left and right elements are identical. The complete sequencing of the ser2 gene cluster and flanking regions (T. M. Eckstein, M. L. Lambert, P. J. Brennan, J. T. Belisle, and J. M. Inamine, direct submission to GenBank, accession no. AF143773) showed that these elements are oriented as direct repeats in the genome (Fig. 1).

Repetitive element is a composite IS element designated IS1601. (i) Analysis of the ORFs. The four ORFs (Fig. 2) of the repetitive element, designated IS1601, show a high degree of similarity to three separate IS families. ORF1 (nucleotides 126 to 1373) encodes a putative 45.3-kDa transposase, based on the high degree of homology (68% identity and 98% similarity) to the transposase of IS151 from Mycobacterium gordonae (34) and to transposases of members of the IS256 family (11, 23, 33). The gene product of ORF2 (nucleotides 1632 to 2834) is predicted to be 44.2 kDa, and the amino acid sequence demonstrates significant homology (35% identity and 62% similarity) to the minicircle protein of IS117 (18) from Streptomyces coelicolor A3(2) that is a member of the IS10 family (26). Finally, the 13.0- and 18.7-kDa products predicted to be encoded by ORF3 (nucleotides 2886 to 3230) and ORF4 (nucleotides 3230 to 4147), respectively, are highly homologous to the transposase subunits of the IS3-like insertion sequences (IS897 and IS986) found in the Mycobacterium tuberculosis complex (19, 27).

(ii) Analysis of the direct and inverted repeats. Supporting evidence that the 4,262-bp IS1601 is probably a composite of three different IS elements came from the localization of the direct repeats (DRs) and inverted repeats (IRs) within IS1601.
with respect to the four ORFs (Fig. 2). By comparing these data with the genome sequence data from *M. avium* strain 104 provided by The Institute for Genomic Research (http://www.tigr.org) along with the DNA sequence of the *ser2* gene cluster from strain 2151 (Eckstein et al., GenBank accession no. AF143772), three major observations were made. First, the 1,347-bp region of *IS1601* (nucleotides 2832 to 4178; red area in Fig. 2) that contains ORF3 and ORF4 can be found as an independent IS element in strain 104 (http://www.tigr.org) and strain 2151. All of the independent copies of this 1,347-bp element possess terminal 15-bp IRs and appear to generate 3-bp DRs of the target sequence. The same organization of IRs and DRs is found within *IS1601*, and this 1,347-bp region, whose ends are defined by IR2 and DR3, is designated part C (red area in Fig. 2).

The second observation is that nucleotides 1 to 1373 and 4219 to 4262 of *IS1601* (green areas in Fig. 2) together comprise the complete 1,417-bp independent IS element present in *M. avium* strain 104 (http://www.tigr.org). Moreover, the terminal 11-bp imprecise IRs at the ends of *IS1601* (IR1 in Fig. 2) are the same as those of the 1,417-bp element in strain 104. The sequence from strain 104 indicates that the 1,417-bp element generated 8-bp DRs of the target sequence. An 8-bp duplication (DR1) was also found at both ends of the left copy of *IS1601* (*IS1601*-L, Fig. 1 and 2), but not of the right copy (*IS1601*-R, Fig. 1). Thus, this 1,417-bp region, designated part A (green areas in Fig. 2), appears to be an independent IS element that was interrupted during the evolution of *IS1601*.

The third observation is that when parts A and C are subtracted from *IS1601*, the remaining 1,458 bp (nucleotides 1374 to 2831) and 36 bp (nucleotides 4179 to 4214) can form a 1,494-bp region (designated part B, blue areas in Fig. 2) containing ORF2 with a 4-bp DR at each end (designated DR2). Homology searches with the B region did not identify any similar sequences in the available *M. avium* strain 104 database, and there are no associated terminal IRs. Taken together, the physical relationship between these three regions suggests that *IS1601* could have evolved from the insertion of B and C into A. As can be seen from Fig. 2, one possible scenario is that part C (red) is inserted into part B (blue), producing DR3, and this composite of B and C then is inserted into part A (green), generating DR2. Finally, the tripartite element containing A, B, and C (*IS1601*) is inserted into the *ser2* region, giving rise to DR1.

Mechanism of deletion of the *ser2* gene cluster. The finding that *IS1601* elements flank the *ser2* gene cluster as direct repeats suggested that homologous recombination between the two copies of *IS1601* might have mediated the deletion of the *ser2* gene cluster to generate the Rg-1 mutant of *M. avium* strain 2151. However, there was also the possibility that the *IS1601* elements and the intervening *ser2* gene cluster formed a large composite transposon that was excised, as has been shown for the transpositional excision of a prophage bracketed by direct repeats of *IS1* (39). These two mechanisms could be readily discerned by the presence or absence of *IS1601*. If the deletion of the *ser2* gene cluster had occurred via homologous recombination, then a single copy of *IS1601* would remain at the site of deletion in the Rg-1 strain, while *IS1601* would be absent from the deletion site if the *ser2* genes had been excised by transposition (Fig. 3A).

A PCR strategy was devised to distinguish between these two mechanisms. Primers P L1 and P R1 were based on the sequences flanking *IS1601*-L and *IS1601*-R, respectively, and primers P L2 and P R2 were generated from internal sequences of *IS1601* (Fig. 3A). Deletion of the *ser2* gene cluster by transposition would produce a single PCR product of 189 bp (P L1 and P R1), whereas deletion by homologous recombination would result in products of 4,451 bp (P L1 and P R1), 1,496 bp (P L1 and P L2), and 3,508 bp (P R1 and P R2) with Rg-1 DNA. As shown in Fig. 3B, amplification of Rg-1 DNA resulted in PCR products of 4.4 kb (lane 2), 1.5 kb (lane 3), and 3.5 kb (lane 4). These results were compatible with the homologous recombination model.

To prove that *IS1601* was indeed within the 4.4-kb PCR product derived with primers P L1 and P R1, the fragment was cloned and sequenced. This demonstrated that a single *IS1601* element remained at the site of deletion in the Rg-1 chromosome. Moreover, the sequences flanking the left and right sides of this single copy of *IS1601* were identical to those at the distal ends of *IS1601*-L and *IS1601*-R, respectively. These data, along with our previous biochemical characterization of *M. avium* Rg variants (5), provide definitive evidence that the deletion of a 21-kb genomic fragment containing the *ser2* gene cluster that resulted in the Rg-1 morphotype was mediated by recombination between direct repeats of flanking *IS1601* elements.

Screening of additional Rg mutants for the Rg-1 deletion. In order to determine if the specific deletion observed for the Rg-1 morphotype was an isolated or rare event, 15 additional
Rg colony variants (Rg-O1 to Rg-O10 and Rg-T1 to Rg-T5) were independently isolated from the *M. avium* 2151 SmO and SmT strains. Analysis by the PCR test described above showed that 9 of the 10 Rg isolates derived from the SmT morphotype and 1 of the 5 Rg isolates derived from the SmT morphotype yielded the 4.4-kb PCR fragment that is diagnostic for the Rg-1 deletion (Table 1). PCR analysis was also performed to determine the presence or absence of *rtfA* (12), a gene that is contained within the *ser2* gene cluster and is thus a part of the genomic region that is lost in Rg-1. As expected, all of the newly isolated Rg variants that tested positive for the 4.4-kb region of the surrounding chromosome (24). In comparison, the 21-kb deletion observed in Rg-1 is RecA dependent or if recombination is mediated by an *rtfA*-encoded resolvase. However, since the predicted gene products of *IS601* do not show any homology to known resolvases, this latter mechanism would require a trans-acting resolvase.

The fact that the *ser2* locus encodes a full complement of gene products for glycosylation of the serovar 2-specific GPL and is flanked by *IS601* elements suggested that this region of the *M. avium* genome might be a "biosynthetic island" and possibly a compound transposon. Sequencing of an 8.9-kb region of the *ser2* gene cluster in *M. avium* subsp. *paratuberculosis* revealed a group of genes likely responsible for de novo synthesis of fucose and possessing a G+C content lower than that of the surrounding genome, and this led Tizard et al. (40) to speculate that this region represented a pathogenicity island. Deletion in this study from the SmT morphotype.

TABLE 1. PCR amplification of the 4,451-bp Rg-1 deletion marker and the *rtfA* gene from Rg variants of *M. avium* strain 2151

<table>
<thead>
<tr>
<th>Rough variants</th>
<th>4,451-bp PCR product</th>
<th>rtfA gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rg-1c</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-2b</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rg-01b</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rg-02b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-03b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-04b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-05b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-06b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-07b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-08b</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rg-09b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-10b</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rg-T1c</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rg-T2c</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rg-T3c</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rg-T4c</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Rg-T5c</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

The 4,451-bp PCR product was amplified using primers PL1 and PR1; *rtfA* was amplified using protocols described by Eckstein et al. (12). Rg variants originally described by Belisle et al. (4). Rg variants derived in this study from the SmO morphotype. Rg variants derived in this study from the SmT morphotype.

DISCUSSION

Insertion elements have long been known to serve as substrates for homologous recombination. For example, the R100.1 plasmid of *E. coli* was observed to lose a 23-kb resistance determinant, and this deletion was mediated via RecA-dependent recombination between direct repeats of *IS1* (9). Similarly, Ishiguro and Sato (21) demonstrated that spontaneous deletion of a citrate-utilizing gene cluster contained within a compound transposon (Tn3411) was mediated by homologous recombination between direct repeats of *IS3411* elements at each end of Tn3411. However, deletion of this citrate-utilizing gene cluster was RecA independent. At present it is not known whether the 21-kb deletion observed in *M. avium* 2151 is RecA dependent or if recombination is mediated by an *IS601*-encoded resolvase. However, since the predicted gene products of *IS601* do not show any homology to known resolvases, this latter mechanism would require a trans-acting resolvase.

The observation that not all Rg variants result from this type of deletion is in agreement with our earlier findings that an undefined deletion(s) outside of the *ser2* gene cluster can also produce GPL-negative Rg mutants (4).
4.3-kb IS1601. In addition, as noted by Tizard et al. (40), there is no direct evidence that the ser2 gene cluster contributes to the pathogenicity of the bacillus. In all, the ser2 gene cluster with its direct repeats of IS1601 does not fit the classical definition of a pathogenicity island, and, at least in the Rg1-type mutants examined in this work, there is no evidence that it behaves like a compound transposon.

Genomic deletions in other Mycobacterium spp., in particular the M. tuberculosis complex, have been described. Mahairs et al. (25) isolated and characterized several regions of the genome of virulent Mycobacterium bovis (RD1, RD2, and RD3) that were absent from the genome of attenuated M. bovis strain BCG. Detailed sequence analyses of these regions and comparison to the deleted regions in M. bovis BCG demonstrated that a 24-bp imperfect direct repeat flanking the RD2 region was conserved at the site of deletion in BCG strains. This same type of organization was observed for the RD3 region; however, in this case the direct repeats were 12 bp in length. More recently, Gordon and colleagues (7, 17) have identified three deletions in M. tuberculosis H37Rv (RvD2, 7.9 kb; RvD3, 1 kb; and RvD4, 0.8 kb) that are mediated by homologous recombination between IS6110 elements. Similarly, Fang et al. (14) reported that deletions around the ilp locus of M. tuberculosis, identified as a hot spot for IS6110 insertions (19), were also produced by homologous recombination between copies of IS6110. Thus, deletion of the 21-kb ser2 gene cluster of M. avium 2151 via homologous recombination between IS elements is a further example of genome plasticity in Mycobacterium spp. and represents the first example where this genetic mechanism results in a gross morphological change in these bacteria.

A second interesting finding of this present work was that IS1601 appears to be a composite of three independent IS elements. The recently released sequence data for Streptomyces coelicolor A2(3) demonstrated a high concentration of IS elements in cosmid 3C8, with one of the IS110-like elements being disrupted by IS1648 (36). Similarly, Fang et al. (15) reported that the insertional hot spot for IS6110 in the ilp locus of M. tuberculosis is another IS element, IS1547. However, other copies of the disrupted IS110 or IS1547 have not been reported. In contrast, at least two identical copies of IS1601 were present in M. avium strain 2151, strongly suggesting that IS1601 is a true mobile genetic element. It was also noted that directly outside the imperfect inverted repeats of the IS1601-L were 8-bp DRs. At present it is not known which of the three putative transposases encoded on IS1601 is responsible for the movement of this IS element. However, members of the IS256 family typically produce 8-bp DRs (26), and part A of IS1601 (containing ORF1) is predicted to be a member of this IS family. Additionally, the 1,417-bp IS element present in the available genomic sequence of M. avium strain 104 (http://www.tigr.org) and analogous to part A of IS1601 is also associated with 8-bp DRs. In contrast, members of the IS110 family (part B of IS1601) typically do not generate DRs, and the transposase common to the IS3 family (part C of IS1601) produces short DRs of 3 to 5 bp (26). Given that the formation and the size of DRs are a function of the transposase (26), the transposition event responsible for the insertion of IS1601-L was probably mediated by the transposase encoded by ORF1 of IS1601. However, this may not be the only active transposase of IS1601, since IS1601-L lacks similar DRs. We are currently evaluating whether more copies of IS1601 are present in the M. avium genome and whether they mediated other deletions, or if they are specific to the gene cluster that is responsible for glycosylation of GPLs.

ACKNOWLEDGMENTS

This work was supported by grants (AI-18357 to Patrick J. Brennan and AI-41925 to Julia M. Inamine) from the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

We thank Jonathan Carlson, Fauzi Silbaq, and Alain Baulard for advice and thoughtful discussion. We also thank Nazir Barekzi for technical assistance. Preliminary sequence data for M. avium strain 104 were obtained from The Institute for Genomic Research website at http://www.tigr.org.

REFERENCES

