Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl Degrader

Rhodococcus sp. Strain RHA1

WATARU KITAGAWA, KEISUKE MIYAUCHI, EIJI MASAI, AND MASAO FUKUDA*

Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

Received 9 April 2001/Accepted 22 August 2001

Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encoded by the RHA1 benzoate catabolic genes, benABCDK, exhibit 33 to 65% identity with those of Acinetobacter sp. strain ADP1. The gene organization of the RHA1 benABCDK genes differs from that of ADP1. The RHA1 benABCDK region was localized on the chromosome, in contrast to the biphenyl catabolic genes, which are located on linear plasmids. Escherichia coli cells containing RHA1 benABCD transformed benzoate to catechol via 2-hydro-1,2-dihydroxybenzoate. They transformed neither 2- nor 4-chlorobenzoates but did transform 3-chlorobenzoate. The RHA1 benA gene was inactivated by insertion of a thiostrepton resistance gene. The resultant mutant strain, RBD169, neither grew on benzoate nor transformed benzoate, and it did not transform 3-chlorobenzoate. It did, however, exhibit diminished growth on biphenyl and growth repression in the presence of a high concentration of biphenyl (13 mM). These results indicate that the cloned benABCDI genes could play an essential role not only in benzoate catabolism but also in biphenyl catabolism in RHA1. Six rhodococcal benzoate degraders were found to have homologs of RHA1 benABC. In contrast, two rhodococcal strains that cannot transform benzoate were found not to have RHA1 benABC homologs, suggesting that many Rhodococcus strains contain benzoate catabolic genes similar to RHA1 benABC.

Polychlorinated biphenyls (PCBs) are xenobiotic compounds that cause serious environmental problems in the world. The use of microorganisms is expected to be an effective tool for remediation of polluted environments, and many PCB-degrading microorganisms have been described previously (1, 9, 15, 17, 21). Rhodococcus sp. strain RHA1 is a gram-positive bacterium that efficiently degrades PCBs (29, 30). A variety of RHA1 genes involved in the metabolism of biphenyl and PCBs have been characterized (12, 19, 20, 34), including the bphABC and bphDEF gene clusters. It is thought that PCBs are metabolized through a biphenyl pathway (Fig. 1) encoded by the bph genes. Benzoate and chlorobenzoates are intermediate metabolites of biphenyl and PCB degradation. Chlorobenzoate accumulation is often observed during PCB degradation (18, 32). Benzoate metabolism appears to be a key element of PCB degradation, and attempts have been made to improve PCB degradation activity by introducing chlorobenzoate metabolic genes (27, 28). Although the benzoate metabolic pathway enzymes and genes have been well characterized thus far (6, 10, 24), the role of benzoate metabolism in biphenyl and PCB degradation has been poorly documented. In the present study, we isolated and characterized the genes for benzoate metabolism in strain RHA1 and a benzoate metabolism insertion mutant of this strain in order to examine the significance of benzoate metabolism in biphenyl and PCB degradation. We also describe here for the first time the features of benzoate catabolic genes of gram-positive bacteria.

MATERIALS AND METHODS

Bacterial strains, plasmids, and culture conditions. The plasmids and bacterial strains used in this study are listed in Table 1. Rhodococcus strains were grown in Luria-Bertani (LB) medium and M minimal medium (20) with biphenyl or benzoate at 30°C. Escherichia coli JM109 was used as a host strain.

DNA manipulations and analysis. All of the DNA techniques used, including isolation of total DNA, gene cloning, sequencing, Southern hybridization, electrophoresis transformation (electroporation), pulsed-field gel electrophoresis, and computer analysis have been described previously (19, 20, 34). The following primer sequences were used to amplify the benA gene sequence in strain RHA1: forward primer, 5’-TGCACGCACTCACCTG-3’; and reverse primer, 5’-TCGACTCCAGCTTCCAGTT-3’ (16).

Detection of gene products. The gene products expressed in E. coli JM109 were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as described previously (19).

Assays for benzoate conversion activity. (i) Growing cell assay. E. coli cells grown in LB medium were inoculated into 10 ml of fresh LB medium containing 500 μM benzoate and 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) to an optical density at 660 nm (OD660) of 0.1. After incubation with shaking for 6 h at 30°C, an 1-ml aliquot was withdrawn, and cells were removed by centrifugation (10,000 × g, 10 min). The supernatant was filtered through a membrane filter (pore size, 0.45 μm; Advantec, Tokyo, Japan), and the filtrate was analyzed by high-performance liquid chromatography (HPLC). The HPLC analysis was performed with an Alliance 2690 system (Waters, Randolph, Mass.) and a TSKgel ODS-80TM column (inside diameter, 6 mm; length, 150 mm; Tosoh, Tokyo, Japan) at room temperature. The mobile phase was a mixture of water (50%), acetonitrile (49.5%), and phosphate (0.5%), and the total flow rate was 1.3 ml/min. Benzoate and metabolites were detected with a UV spectrophotometric detector at 229 nm for benzoate, 254 nm for 2-hydroxybenzoate (DHB), and 280 nm for catechol. Gas chromatography-mass spectrometry (GC-MS) analysis was performed as described previously (29).

(ii) Resting cell assay. E. coli cells grown in LB medium were inoculated into 10 ml of W minimal medium containing 500 μM benzoate and 1 mM IPTG to an optical density at 660 nm (OD660) of 0.1. The cells were grown in LB medium containing 500 μM benzoate and 1 mM IPTG to an optical density at 660 nm (OD660) of 0.1. After incubation with shaking for 6 h at 30°C, an 1-ml aliquot was withdrawn, and cells were removed by centrifugation (10,000 × g, 10 min). The supernatant was filtered through a membrane filter (pore size, 0.45 μm; Advantec, Tokyo, Japan), and the filtrate was analyzed by high-performance liquid chromatography (HPLC). The HPLC analysis was performed with an Alliance 2690 system (Waters, Randolph, Mass.) and a TSKgel ODS-80TM column (inside diameter, 6 mm; length, 150 mm; Tosoh, Tokyo, Japan) at room temperature. The mobile phase was a mixture of water (50%), acetonitrile (49.5%), and phosphate (0.5%), and the total flow rate was 1.3 ml/min. Benzoate and metabolites were detected with a UV spectrophotometric detector at 229 nm for benzoate, 254 nm for 2-hydroxybenzoate (DHB), and 280 nm for catechol. Gas chromatography-mass spectrometry (GC-MS) analysis was performed as described previously (29).
FIG. 1. Proposed pathway for aerobic bacterial degradation of biphenyl and PCBs. *bphA*, biphenyl dioxygenase complex composed of large and small terminal dioxygenase subunits encoded by *bphA1* and *bphA2*, respectively, ferredoxin encoded by *bphA3*, and ferredoxin reductase encoded by *bphA4*; *bphB*, 2,3-dihydroxy-1-phenylecyclohexa-4,6-diene dehydrogenase (dihydrodiol dehydrogenase); *bphC*, 2,3-dihydroxybiphenyl 1,2-dioxygenase; *bphD*, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase; *bphE*, 2-hydroxy-2,4-dienoate hydratase; *bphF*, 4-hydroxy-2-oxovalerate aaldolase; *bphG*, acetalddehyde dehydrogenase; *benABC*, benzoate dioxygenase complex composed of large and small subunits encoded by *benA* and *benB*, respectively, and electron transfer component encoded by *benC*; *benD*, DHB dehydrogenase; *catA*, (chloro)catechol 1,2-dioxygenase; *catB*, muconate cycloisomerase; *catC*, muconolactone isomerase; *catD*, β-ketoadipate enol-lactone hydrolase; *clcB*, chloromuconate cycloisomerase; *clcD*, dienelactone hydrolase; *clcE*, maleylacetate reductase; *catH*, β-ketoadipate succinyl coenzyme A transferase; *catF*, β-ketoacyl thiolase.

To perform *bphA* gene complementation in RBD169, pK4BA was constructed by inserting a 3.9-kb *BglII-BglII* fragment containing intact *bphA* into an *E. coli*-Rhodococcus shuttle vector, pK4, and it was introduced into RBD169 by electroporation. A transformant, RBD169(pK4BA), was isolated on an LB agar plate containing 50 μg of kanamycin per ml, and the plasmid DNA was recovered by Ausubel et al. (2). To map the 5' end of the transcript of *benA*, automated fluorescent primer extension analysis with a Cy5 fluorescently labeled primer and an AFLExpress DNA sequencer (Amersham Pharmacia Biotech) was performed essentially as described by Myöhänien and Wahlfors (22).

Gene disruption. To disrupt the *benA* gene, a 1.1-kb *BglII-ApaI* fragment containing the internal region of *benA* was inserted into pUC19 and the thiostrepton resistance gene (*tsr*). The resulting plasmid, pDA-tpsr, was introduced into RHA1 cells by electroporation. Transformants were selected on LB agar plates containing 20 μg of thiostrepton per ml and were subjected to a Southern hybridization analysis in order to examine insertion of pDA-tpsr into the chromosomal *benA* gene by single crossover. In the case of *benK* gene disruption, a 774-bp *BglII-MluI* fragment containing the internal region of *benK* was inserted into pBS-tsr, which was composed of PBS-tsr, which was composed of pBlueScript II and *tsr*. Insertion of the resulting plasmid, pDK-tpsr, into the chromosomal *benK* gene was carried out as described above.

Plasmid pBSRG6 was used as a source of the thiostrepton resistance gene (*tsr*) fragment and was a gift from R. van der Geize (University of Groningen, Groningen, The Netherlands).

Primer extension analysis. Total RNA was prepared from RHA1 cells grown at 30°C in W minimal medium supplemented with 10 mM benzoate as described by Ausubel et al. (2). To map the 5' end of the transcript of *benA*, automated fluorescent primer extension analysis with a Cy5 fluorescently labeled primer and an AFLExpress DNA sequencer (Amersham Pharmacia Biotech) was performed essentially as described by Myöhänien and Wahlfors (22). To perform *bphA* gene complementation in RBD169, pK4BA was constructed by inserting a 3.9-kb *BglII-BglII* fragment containing intact *bphA* into an *E. coli*-Rhodococcus shuttle vector, pK4, and it was introduced into RBD169 by electroporation. A transformant, RBD169(pK4BA), was isolated on an LB agar plate containing 50 μg of kanamycin per ml, and the plasmid DNA was recovered to confirm the presence of pK4BA. RBD169(pK4BA) cells grown in LB medium

Assay for benzoate transformation velocity. RHA1 and the *benK* mutant strain, RBD201, were grown in LB medium, and the cells were incubated at 30°C with shaking in a series of W minimal medium preparations containing 100 μM benzoate whose pH values were adjusted to 6.2, 7.3, and 8.4. Prior to incubation, the OD060 was adjusted to 0.1. At selected times, 1-ml aliquots were subjected to HPLC and GC-MS analysis as described above.

Crude cell assay. E. coli cells harvested from 50 ml of LB medium containing 1 mM IPTG were washed and resuspended in 1 ml of sample buffer (20 mM potassium phosphate buffer [pH 7.5] containing 15% glycerol, 10% ethanol, and 2 mM dithiothreitol). The cells in the suspension were disrupted by sonication. After centrifugation (20,000 g, 30 min), the supernatants were used for further experiments.

Disruption of the *benK* gene. Total RNA was prepared from RHA1 cells grown at 30°C in W minimal medium supplemented with 10 mM benzoate as described by Ausubel et al. (2). To map the 5' end of the transcript of *benA*, automated fluorescent primer extension analysis with a Cy5 fluorescently labeled primer and an AFLExpress DNA sequencer (Amersham Pharmacia Biotech) was performed essentially as described by Myöhänien and Wahlfors (22). To perform *bphA* gene complementation in RBD169, pK4BA was constructed by inserting a 3.9-kb *BglII-BglII* fragment containing intact *bphA* into an *E. coli*-Rhodococcus shuttle vector, pK4, and it was introduced into RBD169 by electroporation. A transformant, RBD169(pK4BA), was isolated on an LB agar plate containing 50 μg of kanamycin per ml, and the plasmid DNA was recovered to confirm the presence of pK4BA. RBD169(pK4BA) cells grown in LB medium...
were washed and resuspended in W minimal medium containing 10 mM benzoate. The OD_{600} was adjusted to 0.02, and the cell suspension was incubated at 30°C with shaking. Growth of RBD169 on biphenyl was examined by incubating RBD169 cells at 30°C with shaking.

RESULTS

Cloning of benzoate dioxygenase genes. To clone benzoate dioxygenase genes, PCR was performed with the primer sequences conserved in aromatic ring hydroxylase dioxygenase genes. The 300-bp fragments amplified from RHA1 total DNA were separated into five PCR products by temporal temperature gradient electrophoresis and extracted from the gel. The nucleotide sequence of each PCR product was determined. Three of the products were found to contain parts of putative new aromatic ring hydroxylase dioxygenase genes in RHA1. One of the PCR products obtained for new genes was similar to benA of Acinetobacter sp. strain ADP1 (23). The open reading frames that exhibited similarity to the benABCD and benK genes of Acinetobacter sp. strain ADP1 (23). These open reading frames were designated benABCDK (Fig. 2). As shown in Table 2, the deduced amino acid sequences of the RHA1 benABCD gene products (BenABCDK) exhibited 53 to 69% identity with the amino acid sequences of BenABCD of ADP1 and Pseudomonas putida PRS2000. In addition, BenK of RHA1 exhibited 33 and 38% identity with BenK of ADP1 and BenK of PRS2000, respectively (7, 23). The sizes of the corresponding genes of RHA1 and ADP1 were almost the same, except for benC. The RHA1 benC gene was 537 bp (encoding 179 amino acids) longer than the ADP1 benC gene. The similarities between RHA1 BenC and ADP1 BenC or other related proteins occurred from the amino termini to the carboxyl termini of the proteins, except for the extra carboxyl-terminal sequence of RHA1 BenC.

Transformation of benzoate by benABCD gene products. To identify the gene products, benABCD was subcloned from pK4/BK2 to construct pBK4 (Fig. 2). The genes in pBK4 were expressed under control of the lac promoter in E. coli JM109, and the proteins were separated by SDS-PAGE (Fig. 3). Four products, at 50.0, 22.8, 56.4, and 28.4 kDa, were observed (lane 3), and these molecular masses were in good agreement with those calculated from the deduced amino acid sequences of BenA (51.7 kDa), BenB (20.0 kDa), BenC (56.0 kDa), and BenD (27.8 kDa), respectively.

Transformation of benzoate by benABCD gene products was

TABLE 1. Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristic(s)</th>
<th>Reference or origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodococcus sp. strain RHA1</td>
<td>PCB degrader, Ben⁺</td>
<td>29</td>
</tr>
<tr>
<td>Rhodococcus sp. strain RBD169</td>
<td>benA mutant of strain RHA1, Ben⁻</td>
<td>This study</td>
</tr>
<tr>
<td>Rhodococcus sp. strain RBD201</td>
<td>benK mutant of strain RHA1, Ben⁺</td>
<td>This study</td>
</tr>
<tr>
<td>R. erythropolis NY05</td>
<td>PCB degrader, Ben⁺</td>
<td>25</td>
</tr>
<tr>
<td>R. erythropolis IAM1399 (= ATCC 15963)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. rhodochrous IAM12121 (= ATCC 1273)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. rhodochrous IAM12123 (= ATCC 1276)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. rhodochrous IAM12124 (= ATCC 15906)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. roseus (R. rhodochrous) IAM12127 (= ATCC 4004)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. erythropolis IAM12122 (= ATCC 1277)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>R. erythropolis IAM1484 (= ATCC 15961)</td>
<td>Wild type, Ben⁻</td>
<td>IAM culture collection⁺</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBsRG6</td>
<td>Cloning vector, Ap⁺ Ts⁺</td>
<td>R. van der Geize</td>
</tr>
<tr>
<td>pUC19</td>
<td>Cloning vector, Ap⁺</td>
<td>35</td>
</tr>
<tr>
<td>pUC-tsr</td>
<td>pUC19 with insertion of tsr gene from pBsRG6, Ap⁺ Ts⁺</td>
<td>This study</td>
</tr>
<tr>
<td>pBluescript II KS</td>
<td>Cloning vector, Ap⁺</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pBS-tsr</td>
<td>pBluescript II KS with insertion of tsr gene from pUC-tsr, Ap⁺ Ts⁺</td>
<td>This study</td>
</tr>
<tr>
<td>pK4</td>
<td>pBluescript-E. coli shuttle vector, Km⁺</td>
<td>11</td>
</tr>
<tr>
<td>pBK4</td>
<td>pBluescript II KS with 4.4-kb Smal fragment of RHA1 carrying benABCD, direction of benABCD is identical to that of the lac promoter of pBluescript II KS</td>
<td>This study</td>
</tr>
<tr>
<td>pBK11</td>
<td>Deletion clone of pBK4 carrying benABCD</td>
<td>This study</td>
</tr>
<tr>
<td>pDA-tsr</td>
<td>benA disruption plasmid, pUC-tsr with 1.1-kb NspV-Apal benA</td>
<td>This study</td>
</tr>
<tr>
<td>pDK-tsr</td>
<td>benK disruption plasmid, pBS-tsr with 774-bp BglII-MluI benK</td>
<td>This study</td>
</tr>
<tr>
<td>pK4/BK2</td>
<td>pK4 with 1.9-kb KpnI-BgII fragment carrying benA, complements the benA mutant</td>
<td>This study</td>
</tr>
</tbody>
</table>

a Ben⁺, growth on benzoate; Ben⁻, no growth on benzoate; Ts⁺, thiostrepton resistance.
b IAM, Institute of Applied Microbiology.
examined in *E. coli* JM109, which can transform neither benzoate nor its metabolite, DHB. It is thought that *e* *benABC* and *benD* encode a benzoate dioxygenase and a DHB dehydrogenase, respectively, which catalyze conversion of benzoate to DHB and conversion of DHB to catechol (Fig. 1). None of the crude cell extracts of *E. coli* cells containing pBK4, which contained *benABC*, or *E. coli* cells containing pBK11, which contained *benABCD* (Fig. 2), transformed benzoate even in the presence of flavin adenine dinucleotide and NADH. No transformation was detected even in a resting cell assay. Therefore, a growing cell assay was performed as described in Materials and Methods. HPLC analysis showed that transformation of benzoate to some metabolite occurred in each culture containing cells harboring either pBK4 or pBK11. Each metabolite was extracted and analyzed by GC-MS. The metabolites from the cultures of pBK4- and pBK11-containing cells were identified as catechol and DHB, respectively (data not shown). Transformation of chlorobenzoates was also examined with *E. coli* cells containing pBK11. The cells were grown in LB medium containing either 500 μM benzoate or 500 μM chlорobенzoate. During the 6 h of growth, 55% of the benzoate and 13% of the 3-chlorobenzoate were transformed, while transformation of 2- and 4-chlorobenzoates was not observed.

In the case of the RHA1 resting cell assay, the cells were induced in W minimal medium containing 1 mM benzoate. During 30 min of incubation of the induced cells in W minimal medium containing each substrate at a concentration of 500 μM, 62% of the benzoate and 32% of the 3-chlorobenzoate were transformed. No transformation of 2- and 4-chlorobenzoates was observed. These results suggest that the RHA1 *benABC* gene product could transform not only benzoate but also 3-chlorobenzoate.

Localization of ben genes on the chromosome. RHA1 contains three linear plasmids, pRHL1 (1,100 kb), pRHL2 (450 kb), and pRHL3 (330 kb). The primary PCB degradation genes, *bphABC* and *bphDEF*, are located on pRHL1 and pRHL2, respectively (19, 31). Pulsed-field gel electrophoresis and Southern hybridization analysis were performed to localize the *benABC* genes on replicons in RHA1. The *benA* gene probe hybridized to the origin of electrophoresis, where chromosomal DNAs remained (data not shown). These results suggest a chromosomal localization for the *benABC* genes.

Primer extension analysis of the ben operon. To map the transcription start site of the *benA* gene in RHA1, automated fluorescent primer extension analysis was performed. cDNA synthesis was carried out with Cy5-labeled *benA*-PEX primer (5’-CGAAGATGTGCTTCATCTCG-3’), which is complementary to the bases 132 to 151 bp downstream from the initiation codon of *benA*. As shown in Fig. 4, the nucleotides located 58 and 66 bp upstream from the *benA* start codon were identified as the minor and major transcription start points, respectively, for the *benA* gene in RHA1 cells grown on benzoate. No transcription start point for *benA* was observed in the case of RHA1 cells grown in LB medium. The possible σ70 promoter consensus, including −10 and −35 hexamers with the 17-bp optimal spacing between them, was located at the appropriate position for the minor transcription start site.

Disruption of benA gene in RHA1. To examine if the cloned *ben* genes are essential for benzoate catabolism in RHA1, the *benA* gene was insertionally inactivated by homologous recom-

Table 2. Levels of identity between RHA1 ben gene products and representative homologs

<table>
<thead>
<tr>
<th>RHA1 protein</th>
<th>Acinetobacter sp. strain ADP1 (accession no. AF009224)</th>
<th>P. putida PRS2000 (accession no. AF218267)</th>
<th>P. putida pWW0 (accession no. M64747)</th>
<th>Burkholderia cepacia 2CBS (accession no. X79076)</th>
<th>Acinetobacter sp. strain ADP1 (accession no. AF071556)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BenA</td>
<td>63.4 (BenA)</td>
<td>64.1 (BenA)</td>
<td>65.0 (XylX)</td>
<td>55.3 (CbdA)</td>
<td>46.4 (AntA)</td>
</tr>
<tr>
<td>BenB</td>
<td>61.8 (BenB)</td>
<td>69.4 (BenB)</td>
<td>58.0 (XylY)</td>
<td>54.8 (CbdB)</td>
<td>37.2 (AntB)</td>
</tr>
<tr>
<td>BenC</td>
<td>52.7 (BenC)</td>
<td>54.8 (BenC)</td>
<td>53.9 (XylZ)</td>
<td>47.7 (CbdC)</td>
<td>37.5 (AntC)</td>
</tr>
<tr>
<td>BenD</td>
<td>58.0 (BenD)</td>
<td>65.2 (BenD)</td>
<td>63.7 (XylL)</td>
<td>54.8 (CbdB)</td>
<td>37.2 (AntB)</td>
</tr>
<tr>
<td>BenK</td>
<td>32.9 (BenK)</td>
<td>38.3 (BenK)</td>
<td>38.3 (BenK)</td>
<td>38.3 (BenK)</td>
<td>38.3 (BenK)</td>
</tr>
</tbody>
</table>

Levels of identity were estimated for the longest stretch of identity.

FIG. 2. Organization of the *ben* genes in *Rhodococcus* sp. strain RHA1. The thick arrows indicate open reading frames corresponding to *benA*, *benB*, *benC*, *benD*, and *benK*. Fragments cloned in pBluescript II are indicated at the bottom. pBK4 and pBK11 contain *benABCD* and *benABC*, respectively. The thin arrows indicate the direction of transcription from the adjacent lac promoter of the vector plasmid.
We constructed plasmid pDA-tsr to inactivate the benA gene by a single crossover. A single crossover between chromosomal and pDA-tsr benA sequences was expected to generate tandemly duplicated benA sequences, resulting in a vector containing a thiostrepton resistance gene between the sequences (Fig. 5A). Because the benA gene in pDA-tsr was truncated at both termini, the upstream benA sequence lacked the carboxyl terminus, and the downstream benA sequence lacked the amino terminus. As a result, both of the benA sequences had deletions, and neither of them was functional. pDA-tsr was introduced into RHA1 by electroporation, and thiostrepton-resistant transformants were recovered. Southern hybridization analysis of the restriction fragments of total genomic DNA prepared from each transformant was performed to confirm the expected arrangement of duplicated benA sequences. Figure 5B shows the results obtained with the thiostrepton-resistant transformant, RBD169. Both the benA and tsr probes hybridized to a single BglII fragment of RBD169, which was 4.9 kb larger than the RHA1 fragment, indicating that insertion of the entire 4.9-kb pDA-tsr segment into the benA sequence occurred. RBD169 did not grow on benzoate. In the resting cell assay, RBD169 transformed neither benzoate nor 3-chlorobenzoate. These results indicated that the cloned ben genes were responsible for benzoate metabolism and 3-chlorobenzoate metabolism.

To complement benA gene deficiency, pK4BA containing an intact benA gene was introduced into RBD169 by electroporation. Transformant RBD169(pK4BA) grew well on 10 mM benzoate, although its rate of growth was lower than that of the wild type. An RHA1 culture reached an OD660 of 1.9 after 30 h of incubation, but it took 42 h for RBD169(pK4BA) to reach the same OD660 (data not shown). These results indicated again that the cloned benA gene was responsible for benzoate metabolism.

We also isolated benK gene mutant strain RBD201 by the same method that was used for benA gene disruption. benK was expected to encode a benzoate transporter protein. We compared the growth of benK mutant RBD201 with the growth of wild-type strain RHA1 when benzoate was used as the sole source of carbon. However, no significant difference was observed between the growth rates of RBD201 and RHA1. We then compared the rates of transformation of benzoate for RHA1 and RBD201 at different pH values. At pH 6.2, both strains transformed 100 μM benzoate at almost the same rate.

FIG. 3. Expression of benABCD genes in E. coli JM109. Cell extracts of E. coli transformants grown in the presence of IPTG were subjected to 0.1% SDS–12% PAGE. Lane 1, molecular mass marker; lane 2, E. coli JM109(pBluescript II); lane 3, E. coli JM109(pBK4 carrying benABCD).

FIG. 4. Automated fluorescent primer extension analysis of the benA transcript produced in RHA1. (A) Nucleotide sequence obtained with cloned benA, the upstream DNA region, and fluorescent primer benA-PEX. The arrow indicates the transcription start point in the genomic sequence. (B) Primer extension product obtained by using RNA from benzoate-grown RHA1 cells as the template and primer benA-PEX. The retention times of the products are indicated. (C) Nucleotide sequence of the upstream region of benA. The vertical arrows indicate transcriptional start points estimated from panels A and B. The horizontal arrow indicates the position of the benA-PEX primer, whose nucleotide sequence is shown above the arrow. The putative -70 promoter sequence and the deduced ribosome-binding site (RBS) for benA are enclosed in boxes; the former is also shaded. The start codon of benA is underlined.
At pH 7.3, RHA1 transformed benzoate 1.5-fold more efficiently than RBD201 transformed benzoate, and at pH 8.4, RHA1 transformed benzoate 2-fold more efficiently than RBD201 transformed benzoate (data not shown). These results suggested that the cloned \(\text{benK} \) gene plays a role in transport of benzoate. They agreed with the results obtained with a \(\text{benK} \) mutant of ADP1, in which the role of \(\text{benK} \) was masked at low pH (6).

Growth of RBD169 on biphenyl. Because RBD169 is deficient in benzoate metabolism, it is expected to utilize 42% of biphenyl carbon atoms by metabolizing 2-hydroxypenta-2,4-dienoate (containing 5 carbon atoms) produced from biphenyl (containing 12 carbon atoms). When RBD169 was grown on 3.25 or 6.5 mM biphenyl as the sole source of carbon, the maximum OD\(_{660}\) values were 38 and 41% of those obtained with RHA1 (Fig. 6). For the most part, these values are consistent with the estimated values described above. When RBD169 was grown on 13 mM biphenyl, the culture pH dropped to as low as 5.9. The growth of RHA1 exhibited a greater lag than the growth of RBD169, and the extent of the lag was dependent on the initial amount of biphenyl. These results suggested that growth was inhibited by some metabolite derived from benzoate that was not metabolized in RBD169. This growth inhibition might have been caused by toxicity of catechol, which has been described previously for growth of ADP1 on anthranilate (4).

benABC genes in other Rhodococcus species. In order to examine the distribution of \(\text{ben} \) gene homologs in *Rhodococcus* species, Southern hybridization analysis with an RHA1 \(\text{benABC} \) probe was performed by using *KpnI* digests of total DNAs prepared from eight rhodococcal strains, including *Rhodococcus erythropolis* NY05 and IAM1399 (\(\text{ATCC 15963} \)), *Rhodococcus rhodochrous* IAM12121 (\(\text{ATCC 4273} \)), IAM12123 (\(\text{ATCC 4276} \)), and IAM12124 (\(\text{ATCC 15906} \)), and *Rhodococcus roseus* (\(\text{R. rhodochrous} \)) IAM12127 (\(\text{ATCC 4004} \)), as well as *R. erythropolis* IAM12122 (\(\text{ATCC 4277} \)) and IAM1484 (\(\text{ATCC 15961} \)). The first six strains could convert...
and assimilate benzoate, while the last two could not. As shown in Fig. 7, all six strains that could assimilate benzoate had benABC homologs, but the two strains that were unable to assimilate benzoate did not. Four R. rhodochrous strains, IAM12121, IAM12123, IAM12124, and IAM12127, had ben-ABC fragments of the same size.

DISCUSSION

In the present study we characterized the benzoate catabolic genes of a gram-positive PCB degrader, *Rhodococcus* sp. strain RHA1, including *benA*, which was originally identified as an aromatic ring hydroxylation dioxygenase gene, by using PCR and temporal temperature gradient electrophoresis. The deduced amino acid sequences encoded by RHA1 benzoate catabolic genes exhibited some identity with the sequences of gram-negative bacteria. Homologs of the ADP1 *benM* and *benE* genes and the *P. putida* PRS2000 *benR* gene, however, were found neither 3 kb upstream nor 3 kb downstream of the *benABCDK* genes in RHA1. Distinctive gene organization compared to the organizations found in gram-negative bacteria was also observed for RHA1 upper biphenyl catabolic genes, including *bphA, bphB, bphC,* and *bphD*. The RHA1 benzoate catabolic genes, as well as the biphenyl catabolic genes, seem to have diverged from the genes of gram-negative bacteria at an early stage of evolution. In contrast to the upper biphenyl catabolic genes of RHA1, which are located on linear plasmids, benzoate catabolic genes were found to be localized on the chromosome. It seems reasonable that genes responsible for basic metabolic routes, such as benzoate catabolic genes, are located on a chromosome, which is more stable than plasmids. In addition to the different gene organization compared with the organization of the benzoate catabolic genes of gram-negative bacteria, RHA1 *benC* had an extra carboxyl-terminal sequence that was also revealed by the molecular weight of its product as estimated by SDS-PAGE analysis. This extra carboxyl-terminal sequence and its product exhibit no apparent similarity with any known nucleotide or amino acid sequence or sequence motif, and the role of the carboxyl-terminal extension is not known.

Growing cells of an *E. coli* recombinant strain harboring RHA1 *benABC* and *benD* coding for benzoate dioxygenase and dihydrodiol dehydrogenase, respectively, transformed benzoate to catechol via DHB. These results indicated that the cloned *benABC* and *benD* genes were functionally active. However, this activity was observed neither in resting cells nor in a crude cell extract. This may be explained by the instability of the gene products. Continuous synthesis of proteins in growing cells could keep providing intact gene products. Another possible explanation is a lack of NADH, which is required to reduce an electron transfer subunit encoded by *benC* that activates the terminal dioxygenase component of benzoate dioxygenase encoded by *benAB*. This explanation appears to be unlikely, however, because a crude extract of an *E. coli* recombinant strain showed no activity even in the presence of NADH. The transformation competence of recombinant *E. coli* cells grown on benzoate and chlorobenzoates was similar to that of RHA1 cells, suggesting that the cloned *benABC*
genes are primarily responsible for benzoate and chlorobenzoate metabolism in RHA1. This hypothesis is supported by the results obtained with benA mutant RBD169, which transformed neither benzoate nor chlorobenzoates.

In RHA1, transcription of benA was specifically initiated both 58 and 66 bp upstream from benA. This specific transcription initiation was observed only in the cells grown on benzoate, suggesting that benzoate dioxygenase activity in RHA1 is strictly regulated at the transcriptional level, as previously described for benzoate dioxygenase genes in gram-negative bacteria (5, 7, 14). The regulated transcription from separate transcription start sites may indicate that multiple regulatory systems are involved. The 70 promoter consensus was identified upstream of the two transcription start sites. However, the 70 promoter consensus seems to be available only for the −58 minor start site, as it is too close to the −66 major start site. Except for the 70 promoter consensus, the proximal upstream sequence of these start sites exhibited no similarity with any known promoter consensus of bacteria, including E. coli and Streptomyces spp. An unknown sigma factor may be involved in transcription initiation from the −66 major start site.

We designed and constructed plasmids to insertcally inactivate the benA and benK genes only by single crossover. As reported for other strains (3, 8, 26), homologous recombination seemed to be rare in Rhodococcus strains. This also appears to be the case in RHA1, as many of the transformants had insertions at unexpected loci other than the original locus of benA or benK. When we employed a plasmid designed to inactivate benA by double crossover, we obtained only transformants with insertions at unexpected loci (data not shown).

Gene inactivation was achieved by using the thioestrepton resistance gene. When we used a kanamycin resistance gene derived from Tn903, all the transformants had insertions at loci other than the original gene locus, suggesting that frequent nonhomologous illegitimate recombination had occurred. Recently, van der Geize et al. have described insertional inactivation of the katD gene in response to the presence of a kanamycin resistance gene derived from Tn5 (33). The kanamycin resistance gene derived from Tn903 may contain a sequence that promotes illegitimate recombination.

When benA mutant RBD169 was grown on biphenyl, it accumulated benzoate originating from biphenyl. When it was grown on biphenyl at concentrations as high as 13 mM, its growth was repressed, and 6.8 mM benzoate accumulated, indicating the importance of benzoate metabolism in degradation of biphenyl and growth on biphenyl. Because RHA1 can grow on benzoate at concentrations higher than 13 mM when the pH is adjusted, low pH brought about by benzoate accumulation seems to be a primary cause of RBD169 growth repression. There is another possibility, that inhibition of some upper biphenyl catabolic enzyme by an accumulated product could result in growth repression. However, RBD169 grew on biphenyl in the presence of 7 mM benzoate when the medium pH was adjusted to 7.0 (data not shown). Thus, this possibility seems unlikely. When the intact benA gene was introduced into RBD169, the resultant transformant, RBD169(pK4BA), grew on benzoate. Because pK4BA is a multicopy plasmid and the benA gene in pK4BA contains its original promoter region, benA gene expression in RBD169(pK4BA) should be greater than benA gene expression in RHA1. However, the growth rate of RBD169(pK4BA) on benzoate was found to be lower than that of RHA1. The difference might have been due to insertion of pDA-tsr in the benA sequence. This insertion could have decreased expression of downstream genes, including at least benB and possibly benC, benD, and benK. The reduced growth rate of RBD169(pK4BA) on benzoate might have resulted from diminished expression of these ben genes.

All of the benzoate-assimilating rhodococcal strains examined have a sequence similar to RHA1 benABC. In contrast, the two rhodococcal strains that cannot grow on benzoate do not have a sequence similar to RHA1 benABC, suggesting that genes which are very similar to RHA1 benABC are preferentially involved in benzoate metabolism in many rhodococcal strains.

ACKNOWLEDGMENT

We thank R. van der Geize for the kind gift of plasmid pBsrG6.

REFERENCES

benzoate degradation in *Acinetobacter* sp. strain ADP1 by BenA, a LysR-

phobic permease-like protein involved in benzoate degradation by *Acinetoto-

22. Muyihinen, S., and J. Wahlforss. 1993. Automated fluorescent primer exten-

23. Neidle, E. L., C. Hartnett, L. N. Ornstom, A. Bairach, M. Reik, and S. Harayama. 1991. Nucleotide sequences of the *Acinetobacter calcoaceticus* *benABC* genes for benzoate 1,2-dioxygenase reveal evolutionary relation-

coccus* *opi* operon. Antonie van Leeuwenhoek 74:175–188.

