The Global Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants and N-Acylhomoserine Lactones in *Pseudomonas aeruginosa*

GABRIELLA PESSI,†‡ FAYE WILLIAMS,‡‡‡ ZOE HINDLE,‡‡ KARIN HEURLIER,† MATTHEW T. G. HOLDEN,‡‡‡ MIGUEL CÁMARA,‡ DIETER HAAS,† and PAUL WILLIAMS‡‡‡*

Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland, and School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

Received 12 April 2001/Accepted 20 August 2001

Posttranscriptional control is known to contribute to the regulation of secondary metabolism and virulence determinants in certain gram-negative bacteria. Here we report the isolation of a *Pseudomonas aeruginosa* gene which encodes a global translational regulatory protein, RsmA (regulator of secondary metabolites). Overexpression of *rsmA* resulted in a substantial reduction in the levels of extracellular products, including protease, elastase, and phospholipase C, exotoxin A, exoenzyme S, rhamnolipid, hydrogen cyanide (HCN), and pyocyanin) contributes to the pathogenesis of *P. aeruginosa* infections (31, 34). Many of these exoproducts are produced during the late exponential phase of growth, when the cell density is high. In *P. aeruginosa*, cell density-dependent gene expression is coordinated via *N*-acylhomoserine lactone (AHL)-mediated quorum sensing.

P. aeruginosa contains two quorum-sensing systems, termed *las* and *rhl* (13, 21). The *las* system consists of the transcriptional activator protein LasR, the AHL synthase LasI, and *N*-acylhomoserine lactone (3-oxo-C12-HSL). LasR and 3-oxo-C12-HSL (generated via LasI) work in concert to control *las* expression as well as expression of the *P. aeruginosa* *rhl* circuitry, which consists of the regulator RhlR, the AHL synthase RhlI, and N-butanoyl homoserine lactone (C4-HSL) (13, 21). The *las* and *rhl* quorum-sensing circuitry operates as a hierarchical cascade responsible for regulating the expression of multiple virulence determinants and secondary metabolites, the type II secretion machinery, and stationary-phase genes (via the alternative sigma factor RpoS) (for reviews, see references 31 and 34). In addition, 3-oxo-C12-HSL may also function directly as a virulence factor, given its immune modulatory and vasorelaxant properties (32).

While the control of secondary metabolites and virulence factors by AHL-dependent quorum sensing in *P. aeruginosa* is known to be mediated at the transcriptional level, secondary metabolite production in certain bacterial species, notably *Erwinia carotovora* and *Pseudomonas fluorescens*, is subject to both transcriptional and posttranscriptional control (1, 2, 6, 15, 17, 20, 25). In *E. carotovora*, the global regulator protein RsmA (repressor of secondary metabolism) is a posttranscriptional negative regulator of extracellular enzyme and *N*-3-oxohexanoyl homoserine lactone (3-oxo-C6-HSL) synthesis (6).
RsmA is considered to function as an RNA-binding protein that reduces the levels of hslI (also called carl and expI; the gene coding for the 3-oxo-C6-HSL synthase) transcripts, thus influencing AHL production (6). RsmA is a homologue of CsrA (carbon storage regulator), a protein that was initially identified in *Escherichia coli* as a global regulator affecting cell size, cell surface properties, and the regulation of carbon metabolism (25, 26). CsrA is a 61-amino-acid protein containing an RNA-binding motif that is also found in eukaryotic RNA-binding proteins. By controlling access to the ribosome-binding site (RBS) and by altering mRNA stability, CsrA is considered to function as a posttranscriptional regulator (16, 25). In *E. coli*, the regulatory activity of CsrA is modulated by CsrB, an untranslated RNA which binds to about 20 CsA molecules, titrating the available concentration of free CsrA (25). A regulatory RNA related to CsrB has also been identified in *Escherichia coli* (RsmB) (17) and in *P. fluorescens* FI13 (PrrB) (1).

In several different *Pseudomonas* species, the GacS/GacA two-component global regulatory system positively regulates production of secondary metabolites (e.g., HCN and antibiotics) and exoenzymes (5, 11, 14, 24). Overexpression of *rsmA* in *P. fluorescens* CHA0 mimics a GacA defect (2), while overproduction of PrrB in a *P. fluorescens* FI13 gacA or gacA mutant restores HCN and 2,4-diacetylphloroglucinol synthesis (1). In *P. fluorescens* CHA0, a strain that does not have an AHL-dependent quorum-sensing system, the RsmA protein appears to act in the vicinity of the RBS of a target gene(s), e.g., the HCN biosynthesis cluster *hcnABC* (2, 25). In *P. aeruginosa*, the *hcnABC* cluster is regulated not only by GacA, but also via the *las* and *rhl* quorum-sensing circuitry (22, 23). Furthermore, GacA exerts a positive effect on the transcription of *lasR*, *rhlR*, and *hslI*; consequently, the production of C4-HSL is both delayed and reduced in a *rsmA* gacA mutant (24). In the present study, we sought to determine whether, and at what level, RsmA is involved in regulating the production of quorum-sensing-dependent secondary metabolites and virulence determinants in *P. aeruginosa*.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are listed in Table 1. *P. aeruginosa* was routinely grown in nutrient yeast broth (NYB) or on nutrient agar (NA) plates (24). When required, gentamicin and tetracycline were added at 10 μg ml⁻¹ and 125 μg ml⁻¹, respectively.

DNA manipulation. Plasmid DNA preparations, restriction enzyme digestions, ligations, and agarose gel electrophoresis were performed using standard procedures (27). Restriction fragments were purified from agarose gels using the Geneclean II Kit (BIO 101). Transformation of *P. aeruginosa* was carried out by electroporation (22). Nucleotide sequences were determined by automated sequencing, and the data were analyzed with Blast, Gap, and Bestfit using the Genetics Computer Group package.

Cloning, overexpression, and mutation of *P. aeruginosa rsmA* gene. To amplify the *P. aeruginosa rsmA* gene sequence, we used degenerate PCR primers based on the *E. coli* and *Escherichia sonorae* carI and rsmA sequences, respectively (rsm-F: 5'-ATG CTI RTY YTR WCI MRA RT-3'; rsm-R: 5'-GGT ART CTK TTY ISK RTG RAY-3'). The PCR product obtained was sequenced and used to screen a cosmid bank for the *P. aeruginosa rsmA* gene; which was located on a 1.5-kb PstI fragment and introduced into pBluescript II KS. For *rsmA* overexpression studies, the *P. aeruginosa rsmA* gene was generated by PCR using primers rsmA1 (5'-CTGGCCAAGGAAAGCATCAAC-3') and rsmA2 (5'-CTCGCGAACCCTGG GCCGATG-3'). The PCR product was cloned into an *E. coli* expression vector (pME6001) and sequenced, and the data were analyzed with Blast, Gap, and Bestfit using the Genetics Computer Group package.

Construction of translational fusions. Primers RA1 (5'-GAATTC-GCTC-3') and RA2 (5'-GCGCATG-3') were used to generate a translational *rsmA*: *lacZ* fusion containing the first 14 *rsmA* codons (EcoRV site) and the first 9 *hcnA* codons (EcoRV site).

TABLE 1. Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype or phenotype</th>
<th>Reference or origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>Wild type</td>
<td>Holloway Collection</td>
</tr>
<tr>
<td>PAO1</td>
<td>rsmA deletion mutant, derivative of PAO1</td>
<td>This study</td>
</tr>
<tr>
<td>PAZH13</td>
<td></td>
<td>Stratagene</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBluescript II KS</td>
<td>Cloning vector; ColE1 replicon; Ap'R</td>
<td></td>
</tr>
<tr>
<td>pLPL105</td>
<td>pBluescript II KS containing lasRI genes on a 2.4-kb BamHI/XhoI fragment</td>
<td></td>
</tr>
<tr>
<td>pME6001</td>
<td>Cloning vector derived from pBKRI MCS, Gm'</td>
<td></td>
</tr>
<tr>
<td>pME6010</td>
<td>pACYC177-pVS1 shuttle vector, Tc'</td>
<td></td>
</tr>
<tr>
<td>pME3826</td>
<td>pME6010 with a 0.78-kb hcnA upstream fragment and a translational hcnA::lacZ fusion containing the first nine hcnA codons (EcoRV site)</td>
<td></td>
</tr>
<tr>
<td>pME3843</td>
<td>pME6010 containing a 1.09-kb BglII/PstI ptc-hcn fragment and a translational hcnA::lacZ fusion containing the first 9 hcnA codons (EcoRV site)</td>
<td></td>
</tr>
<tr>
<td>pME3846</td>
<td>pME6010 with a 666-bp rhlI upstream fragment and a translational rhlI::lacZ fusion containing the first 14 rhlI codons</td>
<td></td>
</tr>
<tr>
<td>pME3849</td>
<td>pME6001 with rsmA gene on a 311-bp BamHI/Smal fragment</td>
<td></td>
</tr>
<tr>
<td>pME3853</td>
<td>pME6010 with a 174-bp lasI upstream fragment and a translational lasI::lacZ fusion containing the first 13 lasI codons</td>
<td></td>
</tr>
<tr>
<td>pME3859</td>
<td>pME6010 with a 194-bp rsmA upstream fragment and a translational rsmA::lacZ fusion containing the first 7 rsmA codons</td>
<td></td>
</tr>
<tr>
<td>pME3860</td>
<td>pME3843 derivative containing a 3-bp insertion in RBS</td>
<td></td>
</tr>
<tr>
<td>pMP21</td>
<td>pMMBI90 carrying a 2-kb PstI fragment containing rhlI gene from P. aeruginosa</td>
<td></td>
</tr>
<tr>
<td>pNM481</td>
<td>lacZ fusion vector, Ap'R</td>
<td></td>
</tr>
<tr>
<td>pNM482</td>
<td>lacZ fusion vector, Ap'R</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

Cloning and expression of rsmA from P. aeruginosa PAO1. The P. aeruginosa rsmA gene consists of a 186-bp ORF which encodes a 6.9-kDa polypeptide of 61 amino acid residues and is flanked by ORFs with homology to E. coli genes encoding aspartate kinase (yakC) and a serine tRNA (serV) (www.pseudomonas.com). Blast searches revealed that RsmA of P. aeruginosa is closely related to other members of this family of RNA-binding proteins, having 93% identity to Serratia liquefaciens CsrA (AF074437), 92% to E. coli CsrA (L07596), 89% to E. carotovora RsmA (L40173), 85% to Y. enterocolitica CsrA (25), and 84% to P. fluorescens RsmA (AF136151). As with all CsrA and RsmA orthologs, the P. aeruginosa RsmA protein contains a putative RNA-binding motif (25) (KH motif). The P. aeruginosa RsmA is functionally homologous to CsrA of E. coli, since introduction of a plasmid-borne rsmA copy complemented an E. coli csrA mutant by restoring glycogen synthesis back to wild-type levels (data not shown).

To determine the relationship between growth phase and rsmA expression in P. aeruginosa, we constructed a translational rsmA::lacZ fusion carrier by pME3859 in the P. aeruginosa PAO1 wild-type strain. Each point is the mean of three measurements ± standard deviation. (B) PAO1 growth curve. (C) Production of RsmA protein by P. aeruginosa PAO1. Samples for immunoblot analysis were taken throughout the growth curve at hourly intervals from 2 to 7 h and then at 9, 14, and 25 h.

nucleotide sequence accession number. The sequence reported here has been assigned accession number AF061757 in the GenBank database.

Detection of RsmA and PA-IL lectin by Western blotting. P. aeruginosa cells were grown in NYB at 37°C with shaking to an optical density at 600 nm (OD 600) of RsmA and the purified using polyclonal antibodies raised against the purified (Novex), and electroblotted onto nitrocellulose. RsmA and PA-IL were detected Bacterial cells were harvested at intervals and lysed by sonication. After standardization for total protein content, each sample was heated in lithium dodecyl sulfate buffer (Novex), subjected to electrophoresis on 10% Bis-Tris NuPage gels (Novex), and electroblotted onto nitrocellulose. RsmA and PA-IL were detected using polyclonal antibodies raised against the purified Yersinia enterocolitica RsmA and the purified lectin, respectively, as described before (33).

Exoprotein assays. Unless otherwise stated, P. aeruginosa strains were grown in NYB at 37°C with shaking to an optical density at 600 nm (OD 600) of approximately 2.5. Cell-free culture supernatants were assayed for casein-hydrolyzing proteolytic activity (3), elastolytic activity (3), staphylolytic activity (10), and HCN production (22). For pyocyanin, P. aeruginosa was grown for 24 h at 37°C with shaking in glycerol-alanine medium and assayed as described before (24).

AHL production. P. aeruginosa cultures were grown in NYB at 37°C with shaking and sampled at OD 600 of 0.6 and 2.5, which correspond to late exponential and stationary phase, respectively. Cell-free supernatants (10 ml) adjusted to pH 5.0 were extracted with dichloromethane twice with 10 ml each, and the presence of AHLS in 1 to 5 µl of extract was assayed using C 12, reverse-phase thin-layer chromatography (TLC) overlaid with the indicator organisms Chromobacterium violaceum CV026 (18) for the detection of C4-HSL and Agrobacterium tumefaciens (traG-lacZ) (29) for the detection of 3-oxo-C12-HSL. The levels of AHLS were determined by comparison with known amounts of C4-HSL and 3-oxo-C12-HSL standards synthesized as described before (4).

β-Galactosidase assay. For β-galactosidase measurements by the Miller method (27), P. aeruginosa cells were grown in NYB with shaking at 37°C.

Cloning and expression of hcnA from P. aeruginosa strain PAO1 has been reported previously (22). In plasmid pME3843, the hcnA promoter of plasmid pME3826 was replaced by the constitutively expressed lac promoter as described (2). A derivative of pME3843 which contains a 3-bp insertion (italic) in the RBS (CACACAGG) was constructed using the oligonucleotide-annealing technique (7). The 76-bp-long KpnI/PstI region of pME3843 containing the hcn 5' untranslated region and the first nine codons of the hcnA coding region was replaced with a KpnI/PstI linker carrying a mutated Shine-Dalgarno sequence, resulting in plasmid pME3860.

β-Galactosidase activity. The construction of plasmid pME3826 with a translational hcnA::lacZ fusion of P. aeruginosa strain PAO1 was confirmed by restored glycogen synthesis (22). In plasmid pME3843, the hcnA promoter of plasmid pME3826 was replaced by the constitutively expressed lac promoter as described (2). A derivative of pME3843 which contains a 3-bp insertion (italic) in the RBS (CACACAGG) was constructed using the oligonucleotide-annealing technique (7). The 76-bp-long KpnI/PstI region of pME3843 containing the hcn 5' untranslated region and the first nine codons of the hcnA coding region was replaced with a KpnI/PstI linker carrying a mutated Shine-Dalgarno sequence, resulting in plasmid pME3860.

β-Galactosidase activity. For β-galactosidase measurements by the Miller method (27), P. aeruginosa cells were grown in NYB with shaking at 37°C.

Detection of RsmA and PA-IL lectin by Western blotting. P. aeruginosa cells were grown in NYB at 37°C with shaking to an optical density at 600 nm (OD 600) of approximately 2.5. Cell-free culture supernatants were assayed for casein-hydrolyzing proteolytic activity (3), elastolytic activity (3), staphylolytic activity (10), and HCN production (22). For pyocyanin, P. aeruginosa was grown for 24 h at 37°C with shaking in glycerol-alanine medium and assayed as described before (24).

AHL production. P. aeruginosa cultures were grown in NYB at 37°C with shaking and sampled at OD 600 of 0.6 and 2.5, which correspond to late exponential and stationary phase, respectively. Cell-free supernatants (10 ml) adjusted to pH 5.0 were extracted with dichloromethane twice with 10 ml each, and the presence of AHLS in 1 to 5 µl of extract was assayed using C 12, reverse-phase thin-layer chromatography (TLC) overlaid with the indicator organisms Chromobacterium violaceum CV026 (18) for the detection of C4-HSL and Agrobacterium tumefaciens (traG-lacZ) (29) for the detection of 3-oxo-C12-HSL. The levels of AHLS were determined by comparison with known amounts of C4-HSL and 3-oxo-C12-HSL standards synthesized as described before (4).

Nucleotide sequence accession number. The sequence reported here has been assigned accession number AF061757 in the GenBank database.
slight (30%) reduction in early stationary phase (data not shown).

Phenotypic consequences of overexpression or deletion of
rsmA. To investigate the role of *P. aeruginosa* RsmA in the regulation of virulence determinants and secondary metabolites, we examined the effects of *rsmA* overexpression (*rsmA⁺⁺*) or deletion. For overexpression, *rsmA* from *P. aeruginosa* PAO1 was cloned into the multicopy vector pME6001 under the control of the lac promoter (pME3849) and introduced into strain PAO1. In addition, an *rsmA* chromosomal deletion mutant was constructed in PAO1 by allelic exchange as described in Materials and Methods. When grown with good aeration in NYB at 37°C, the *rsmA* mutant grew slightly more slowly (doubling time of 36 min) than the parent strain (doubling time of 31 min; data not shown).

Cell-free supernatants of PAO1, the *rsmA* mutant PAZH13, and the *rsmA*-overexpressing strain PAO1(pME3849) grown to an OD₆₀₀ of 2.5 were assayed for proteolytic, elastolytic, and staphylolytic activities. Protease and elastase activities in the *rsmA* mutant PAZH13 were similar to those in the wild-type, while staphylolytic (LasA protease) activity was reduced by approximately 30% (Fig. 2A). In contrast, overexpression of *rsmA* substantially reduced the three different exoenzyme activities by >80% (Fig. 2B). Furthermore, while production of the cytotoxic “internal lectin” PA-IL (33) was abolished in the *rsmA⁺⁺* strain, it was produced in the *rsmA* mutant (Fig. 2C).
On *Pseudomonas* isolation agar, which selects for pyocyanin production, the level of the blue pigment produced by the *rsmA* mutant was much higher than that produced by the wild-type strain (data not shown). In parallel, the *rsmA* mutant grown to late exponential phase (OD$_{600}$ of 2.5 to 3.0) in glyceral-alanine liquid medium produced five times more pyocyanin than did the wild-type PAO1 (56 ± 4 versus 10 ± 0 µg ml$^{-1}$), and the *rsmA$^{+}$* strain produced 10 times less pyocyanin than the wild type (1 ± 0 versus 10 ± 0 µg ml$^{-1}$).

Influence of rsmA on cyanogenesis. To determine whether, in *P. aeruginosa*, RsmA controls HCN production, we followed HCN production throughout the growth curve in wild-type PAO1, the *rsmA* mutant, and the *rsmA$^{+}$* strain. The production of HCN was greater in the *rsmA* mutant than in the wild-type PAO1 during the early stages of growth (Fig. 3). As the cell density increased, the difference in the levels of HCN produced by the two strains decreased, until the wild-type culture contained a higher concentration of HCN than the *rsmA* mutant (open circles), and the *rsmA*-overexpressing strain PAO1(pME3849) (solid circles). Each point is the mean of three independent experiments.

Effect of rsmA on AHL production. In *P. aeruginosa*, the production of numerous exoproducts, including exoenzymes, pyocyanin, and HCN, is under AHL-dependent quorum-sensing control (31, 34). To determine whether RsmA influences the production of 3-oxo-C12-HSL and C4-HSL, we quantified AHL levels both early and late in the exponential phase of growth (Table 2). Although the *rsmA* mutant produced more 3-oxo-C12-HSL than did the parent strain in the early exponential phase, this effect was reversed by the time that the cultures reached late log phase. C4-HSL production followed a similar pattern except that the mutant produced about twice the parental level of C4-HSL by late log phase. The *rsmA$^{+}$* strain, however, produced significantly lower levels of both AHLS (Table 2).

RsmA-dependent regulation of lasI and rhlI. To confirm the modulatory effect of RsmA on AHL synthesis as a function of growth, we examined the RsmA-dependent expression of the *P. aeruginosa* genes encoding the AHL synthases, *lasI* and *rhlI*. In an *rsmA* mutant background, expression of a translational *lasI-lacZ* fusion was induced prematurely to a level some 10-fold higher than the wild-type level during the exponential phase (Fig. 4A). When RsmA was overproduced, expression of the *lasI-lacZ* fusion was delayed until the bacterial cells reached an OD$_{600}$ of around 1.0. As noted above with HCN production, mutation of *rsmA* resulted in elevated expression levels during the early stages of growth. As the bacterial cell population reached the late exponential phase (OD$_{600} > 1.5$), expression of the *lasI-lacZ* fusion in the wild-type background surpassed that of the mutant.

The second *P. aeruginosa* quorum-sensing circuit, *rhl*, was also influenced by RsmA. Compared with the wild type and *rsmA* mutant, expression of *rhlI* in the *rsmA*-overexpressing strain was drastically reduced throughout the growth curve (Fig. 4B). In the *rsmA* mutant, *rhlI* expression was slightly advanced compared with the parent strain and reached a lower final level in stationary phase. Overall, the negative effects of RsmA on the quorum-sensing machinery paralleled those on the exoproducts.

RsmA-mediated control of hcn expression also occurs at a posttranscriptional level. Expression of the *hcn* operon in the AHL-negative *P. fluorescens* strain CHA0 is regulated by RsmA under the control of the two-component regulatory system GacS/GacA and involves the RBS region of *hcnA* (2). To investigate whether a similar posttranscriptional control of *hcn* expression is conserved in *P. aeruginosa*, the native anaerobic and quorum-sensing-dependent *hcn* promoter (22) was replaced by the constitutively expressed tac promoter in pME3843. Figure 5 reveals that posttranscriptional control of *P. aeruginosa* hcn expression was also exerted at the level of the RBS region; insertion of three nucleotides (ACA) into the hcn RBS of pME3860 caused a loss of RsmA control (Fig. 5).

![FIG. 3. Cell density-dependent HCN production in *P. aeruginosa.* HCN production was measured in wild-type PAO1 (squares), the *rsmA* mutant PAZH13 (open circles), and the *rsmA*-overexpressing strain PAO1(pME3849) (solid circles). Each point is the mean of three independent experiments.](http://jb.asm.org/)

TABLE 2. RsmA-dependent production of *P. aeruginosa* autoinducers 3-oxo-C12-HSL and C4-HSL.

<table>
<thead>
<tr>
<th>Strain (genotype)</th>
<th>Conc (µM) at indicated OD$_{600}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-oxo-C12-HSL</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>PAO1 (rsmA$^{+}$)</td>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td>PAZH13 (rsmA)</td>
<td>0.45 ± 0.01</td>
</tr>
<tr>
<td>PAO1(pME3849) (rsmA$^{+}$)</td>
<td>0.08 ± 0.06</td>
</tr>
</tbody>
</table>

* Concentrations of 3-oxo-C12-HSL and C4-HSL were estimated for *P. aeruginosa* strains grown in NYB by TLC analysis (see Materials and Methods) when cells reached an OD$_{600}$ of 0.6 and 2.5. The experiment was performed in triplicate. Values are means ± standard deviations.
The widespread occurrence of conserved rsmA and csrA genes in many different gram-positive and gram-negative bacteria, including a number of human and plant pathogens, suggests that CsrA and RsmA proteins may be functionally equivalent (25). Indeed, the *P. aeruginosa* rsmA gene can complement an *E. coli* csrA mutant with respect to repression of glycogen biosynthesis, and the RsmA protein is recognized by antibodies raised against the *Y. enterocolitica* counterpart.

In *P. aeruginosa*, we have shown that overexpression of rsmA results in severe downregulation of protease, elastase, and staphylolytic activities as well as reduced production of lectin, HCN, and pyocyanin. Since each of these phenotypes is regulated via the las/rhl quorum-sensing cascade (13, 21), it is conceivable that this repression is a consequence of a reduction in the levels of 3-oxo-C12-HSL and C4-HSL. The levels of both AHLs as well as expression of the AHL synthase genes lasI and rhlI were reduced in the rsmA strain, a finding which is consistent with this hypothesis. However, the addition of exogenous 3-oxo-C12-HSL and C4-HSL to the *P. aeruginosa* rsmA strain did not restore exoenzyme production to wild-type levels (F. Williams, unpublished data). This suggests that the negative effect of RsmA overproduction on the corresponding exoprotein genes is not only a direct consequence of the repression of AHL synthesis but also involves an effect downstream of the quorum-sensing circuitry, possibly at the level of the structural genes.

Interestingly, while overexpression of rsmA had a greater effect on rhl than las expression, the rsmA mutant produced approximately twofold more C4-HSL in stationary phase than the parent. This finding does not correlate directly with the data obtained for the translational rhl-lacZ fusion, which exhibited a lower level of activity in stationary phase than the wild type. The reason(s) for this observation is not clear but may reflect higher levels of substrate availability for RhII (3-adenosylmethionine and either butanoyl-coenzyme A or butanoyl-acyl carrier protein [9]) in the mutant compared with the wild type.

Mutation of rsmA in the plant pathogen *E. carotovora* results in elevated production of extracellular enzyme virulence determinants and a hypervirulent phenotype (6). In *P. aeruginosa*, the corresponding mutation had only minor effects on exoenzyme and lectin synthesis. In contrast, the production of HCN in the *P. aeruginosa* rsmA mutant was induced prematurely and enhanced during the exponential stage of growth. Beyond an OD₆₀₀ of 1.5, however, the wild-type strain produced more HCN than the mutant, presumably because the negative effect of RsmA is overcome by other regulators during the onset of stationary phase. The rsmA mutant also synthesized high levels of pyocyanin, indicating that RsmA functions as a negative regulator of secondary metabolites. Whether this is sufficient to confer a hypervirulent phenotype on *P. aeruginosa* is not yet known, although an rpoS mutant which also overproduces HCN and pyocyanin (while retaining wild-type levels of elastase and staphylolytic activity) was reported to be more virulent than the parent strain in a rat chronic lung infection model (30). A similar observation has been made for *E. carotovora* (19) in that an rpoS-negative mutant is a more virulent plant pathogen than the parent. In *Erwinia*, this appears to be a consequence of the modulation of rsmA expression, which is positively controlled by RpoS (19). Whether this is also the case for *P. aeruginosa* remains to be established; the las/lac fusion and Western blot data presented in this paper show that rsmA is expressed throughout growth with an approximately threefold enhancement in stationary phase. This finding is consistent with a possible role for RpoS in modulating rsmA expression in *P. aeruginosa*.

Previous work on *P. fluorescens* CHA0, which does not produce AHLs (2), has indicated that RsmA lies downstream of the GacA regulatory network and that the posttranscriptional control by the GacA/RsmA system in this organism involves a
specific recognition sequence in the region of the RBS of hcnA (2). By replacing the natural quorum-sensing-dependent hcn promoter of P. aeruginosa (22) with the constitutively expressed tac promoter, we have shown that expression of a translational hcnA-lacZ fusion is regulated posttranslationally by RsmA. An insertion of three nucleotides (ACA) into the hcn Shine-Dalgarno sequence resulted in a loss of RsmA control, demonstrating the importance of the RBS region for the negative control exerted by RsmA. Thus, it would appear that in P. aeruginosa RsmA modulates quorum-sensing-dependent phenotypes at multiple levels.

Although the loss by mutation of gacA in P. aeruginosa does not affect the production of secondary metabolites and exoenzymes as strongly as in P. fluorescens (12, 19, 24), it is nevertheless clear that GacA and RsmA exert overall opposing effects on HCN, pyocyanin, and exoenzyme production in both organisms. In P. aeruginosa, the las and rhl systems constitute an additional regulatory layer which is also modulated by GacA and RsmA in a growth phase-dependent manner. However, the direct targets of GacA and RsmA in the quorum-sensing system have not yet been identified. In the global control exerted by GacA and RsmA in P. aeruginosa does not appear to operate via a linear signal transduction pathway but via both transcriptional modulation of the quorum-sensing circuitry and AHL-independent translational modulation at the RBS of target structural genes.

Acknowledgements

We thank Cornelia Reimann for discussion, Klaus Winzer for critical reading of the manuscript, and Keith Bishop for raising antibodies to Y. enterocolitica RsmA.

This work was supported by the Swiss National Foundation for Scientific Research (31-56608.99), by the European Biotechnology project BIO4CT960119, by the Biotechnology and Biological Sciences Research Council, United Kingdom, and by the Medical Research Council, United Kingdom.

References

ERRATUM

The Global Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants and N-Acylhomoserine Lactones in *Pseudomonas aeruginosa*

Gabriella Pessi, Faye Williams, Zoë Hindle, Karine Heurlier, Matthew T. G. Holden, Miguel Cámara, Dieter Haas, and Paul Williams

Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland, and School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, and Institute of Infections and Immunity, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom

Volume 183, no. 22, p. 6676–6683, 2001. Page 6679, Fig. 2A: “(pME3849)” and “(pME6001)” should be deleted from all three graphs. The data are for the plasmid-free PAO1 and PAZH13 strains.