Presence of Prokaryotic and Eukaryotic Species in All Subgroups of the PP\textsubscript{i}-Dependent Group II Phosphofructokinase Protein Family

MIKLÓS MÜLLER,1* JENNIFER A. LEE,1 PAUL GORDON,2 TERRY GAASTERLAND,1 AND CHRISTOPH W. SENSEN3

The Rockefeller University, New York, New York 10021; National Research Council of Canada, Institute for Marine Biosciences, Halifax, Nova Scotia, Canada B3H 4H7; and University of Calgary, Faculty of Medicine, Department of Biochemistry and Molecular Biology, Calgary, Alberta, Canada T2N 4N1

Received 14 May 2001/Accepted 24 August 2001

Inorganic pyrophosphate-dependent phosphofructokinase (PP\textsubscript{i}-PFK) of the amitochondriate eukaryote Mastigamoeba balamuthi was sequenced and showed about 60% identity to PP\textsubscript{i}-PFKs from two eubacteria, Propionibacterium freudenreichii and Sinorhizobium melloti. These gene products represent a newly recognized lineage of PFKs. All four lineages of group II PFKs, as defined by phylogenetic analysis, contained both prokaryotic and eukaryotic species, underlining the complex evolutionary history of this enzyme.

We have recently extended our studies on glycolytic enzymes of parasitic amitochondriate eukaryotes to the free-living Mastigamoeba balamuthi (ATCC 30984) (6) with the goal of comparing the metabolic properties of anaerobic and microaerophilic eukaryotes with dramatically different life styles. This species belongs to the pelobionts, a group of amitochondriate amoeboflagellate protists of uncertain evolutionary position (5, 25). We noted that the sequence of its phosphofructokinase (PFK) showed unexpected characteristics, prompting us to revisit the taxonomic distribution and relationships of various PFK types.

Type A PFK, an enzyme of the glycolytic pathway, phosphorylates fructose 6-phosphate to fructose 1,6-bisphosphate. In most organisms, ATP is the phosphoryl donor (ATP-PFK; EC 2.7.1.11) of the irreversible reaction. A number of protists and plants and some eubacteria contain reversible PFKs, which use inorganic pyrophosphate (PP\textsubscript{i}) instead of ATP (PP\textsubscript{i}-PFK; EC 2.7.1.90). The assumed significance of PP\textsubscript{i} as the phosphoryl donor is reflected in an increase of the ATP yield during glycolysis (16, 26). This notion is supported by the predominant occurrence of PP\textsubscript{i}-PFK in organisms living in hypoxic or anoxic environments, which rely on anaerobic glycolysis (17).

The evolutionary history of PFK does not coincide with accepted notions of organismic relationships and points to past gene duplications and lateral gene transfers. Based primarily on sequence characteristics, type A PFKs are currently assigned to three major groups (groups I, II, and III) (22). Group II can be further subdivided into four subgroups, which appear as robust clades in phylogenetic reconstructions (we are using the tentative nomenclature proposed for clades in group II [18]). Closely related organisms may contain close homologs of PFK which use different phosphoryl donors, indicating that enzyme specificity can change relatively easily (2), a conclusion recently confirmed experimentally (7). Some organisms even contain members of two such subgroups (8, 10–12).

* Corresponding author. Mailing address: The Rockefeller University, 1230 York Ave., New York, NY 10021. Phone: (212) 327-8153. Fax: (212) 327-7974. E-mail: mmuller@mail.rockefeller.edu.
ported by high bootstrap values. The order of separation of lineages within these clades has not been resolved, however. While this subdivision is based only on the easily aligned amino-terminal parts of the sequences, a global comparison of the complete sequences and an analysis of the lengths and positions of insertions and deletions result in an identical subdivision (18).

The data clearly show that each of the four clades of group II PFKs encompasses both eubacterial and eukaryotic species. Eubacterial species in each clade represent diverse lineages, but the overall taxonomic diversity of group II enzymes is rather limited. Clade X contains sequences from several species that are also present in the long clade. So far, no archaeobacterial sequences were noted in PFK group II. While the products of a number of sequences analyzed remain to be studied, available information indicates that the long, short, and P (new designation) clades correspond to PPi-specific enzymes (10, 18) and that clade X contains ATP-specific PFKs (8, 19).

Since only the amino-terminal half of the molecule could be confidently aligned across all groups, the information available for phylogenetic analysis was limited. The robust separation of major groups and clades, however, seems to be sufficient to suggest two major events in the evolution of the enzymes of group II. The first event was probably a gene duplication that separated clade X and the lineage leading to the three other clades (Fig. 1). This duplication was probably accompanied by a change of enzyme specificity in one of the branches. The substrate specificity of the common ancestor remains to be established, however. The second set of events led to differentiation between clades long, short, and P by marked changes in the overall sequence structure but without further change in phosphoryl donor specificity.

The presence of two PFK genes for the chlamydial and plant
enzymes within the long clade reveals further gene duplications within this clade. In plants, gene duplication led to the emergence of catalytic (β) and regulatory (α) subunits (4, 24). A similar duplication and functional change also occurred in group I, which contains the classical ATP-linked enzymes (21). The functional significance of the chlamydial paralogs remains unknown.

The limited and peculiar taxonomic distribution of group II sequences makes a coherent reconstruction of events leading to the observed phenomena a daunting task. The relationships seen in the phylogenetic reconstruction do not coincide with accepted organismic relationships. One must account for the presence of both eubacteria and eukaryotes in each of the four clades of group II PFK genes as well as for the existence of sequences from the same organisms that fall into separate clades. While both early gene duplications and subsequent differential losses (15) and lateral gene transfers (13) have probably contributed to the current picture, only a significantly larger taxonomic sampling and functional characterization of the proteins encoded will permit a convincing reconstruction of the peculiar history of PP2PFK homologs.

We thank Gordonia Bothe (GATC-Biotechnology GMBH, Constance, Germany) for providing the S. meliloti sequence before its publication, Frederick Schuster (Brooklyn College, City University of New York, Brooklyn) for the M. balamuthi culture, Rama K. Singh and his team (NRC, Institute for Marine Biosciences, Halifax, Canada) for the DNA sequencing, Robert Kemp (The Chicago Medical School, North Chicago, Ill.) for suggestions and permission to refer to his culture, Rama K. Singh and L. A. Chavez, L. A., W. Balamuth, and T. Gong. 7.

REFERENCES

