Variation in the Effectors of the Type III Secretion System among *Photorhabdus* Species as Revealed by Genomic Analysis

Karine Brugirard-Ricaud,1 Alain Givaudan,1 Julian Parkhill,2 Noel Boemare,1 Frank Kunst,3 Robert Zumbihl,1,* and Eric Duchaud1

Laboratoire EMIP Ecologie Microbienne des Insectes et Interaction Hôte-Pathogène, Université de Montpellier II, UMR1133 INRA-UMII, 34095 Montpellier Cedex 5,1 and Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15,3 France, and The Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom2

Received 20 January 2004/Accepted 17 March 2004

Entomopathogenic bacteria of the genus *Photorhabdus* harbor a type III secretion system. This system was probably acquired prior to the separation of the species within this genus. Furthermore, the core components of the secretion machinery are highly conserved but the predicted effectors differ between *Photorhabdus luminescens* and *P. asymbiotica*, two highly related species with different hosts.

Bacterial pathogens have evolved complex mechanisms to invade hosts, to escape host defenses, to multiply, and, finally, to cause harm to their hosts (6, 20). According to Wassenaar and Gaastra (27), virulence genes are those directly responsible for pathological damage caused by pathogens and are normally absent from their nonpathogenic relatives. These genes can be organized in so-called pathogenicity islands that are large genomic regions, often unstable and probably acquired during evolution via horizontal genetic transfer (14, 17). This feature became particularly apparent for a set of approximately 20 genes that together encode a pathogenicity device called the type III secretion system (TTSS) (29) whose central feature became particularly apparent for a set of approximately 20 genes that together encode a pathogenicity device called the type III secretion system (TTSS) (29) whose central function is the delivery of bacterial proteins into eukaryotic cells (3). More than 20 TTSSs have been discovered so far in gram-negative bacteria pathogenic for mammals and plants (3, 15) but also in bacterial symbionts of plants and insects (4, 5, 25).

Photorhabdus and *Xenorhabdus* (members of the Enterobacte riaceae family) (2, 12) are bacterial symbionts of entomo pathogenic nematodes belonging to the families *Heterorhabditidae* and *Steinernematidae*, respectively. These bacteria are transported by their nematode vectors into the hemocoel of the insect host, which is quickly killed by a combination of toxin action and septicemia (12). Three species were defined in the genus *Photorhabdus*: *Photorhabdus luminescens*, *P. temperata*, and *P. asymbiotica* (11). In addition, *P. luminescens* and *P. temperata* are subdivided into subspecies as follows: *P. luminescens* subsp. *luminescens*, *P. luminescens* subsp. *akhurstii*, and *P. luminescens* subsp. *laumondii* and *P. temperata* subsp. *temperata* (11). *P. asymbiotica* was never found associated with entomopathogenic nematodes but is isolated from human infections (8, 19). Recently, Akhurst et al. have proposed two subspecies for *P. asymbiotica*: *P. asymbiotica* for an American clinical strain and *P. australis* for an Australian clinical strain (1).

The recent identification of TTSSs in *P. luminescens* (7, 28, 31) prompted us to analyze the genomic diversity of TTSS within the genus *Photorhabdus*.

Comparative genomics of TTSS organization in *Photorhabdus*. Comparisons of the genomic organization of the *Photorhabdus* TTSSs (Fig. 1) were performed with three strains: *P. luminescens* subsp. *laumondii* (strain TT01) (http://genolist.pasteur.fr/PhotoList/) (7), *P. luminescens* subsp. *akhurstii* (strain W14; accession number AY144116) (28), and *P. asymbiotica* (strain ATCC43949), for which the genome sequence is being determined at the Sanger Center (http://www.sanger.ac.uk/Projects/P_asymbiotica/). We identified a TTSS-encoding locus in all three strains analyzed. Our analyses revealed, first, identical TTSS backbones, including all the genes predicted to encode the injectisome (Sct/Lss proteins): i.e., the basal body, the needle-like structure (sctF), and the translocator (lopB, lopD, and lcrV-like genes). As previously reported (28, 31), *Photorhabdus* TTSSs display many striking similarities to the *Yersinia pestis* and *Pseudomonas aeruginosa* TTSSs. *P. luminescens* subsp. *laumondii* and *P. luminescens* subsp. *akhurstii* as well as *P. asymbiotica* possess the same genetic organization required for the complete assembly of a functional TTSS machinery. Moreover, these three *Photorhabdus* species harbor genes similar to the *P. aeruginosa* exsC and exsD genes encoding transcriptional regulators, which are absent from *Yersinia spp.*, suggesting that the regulation of this system is more related to that performing regulation in *P. aeruginosa*.

Second, the locations of the TTSS are identical in all these strains and are downstream of the *Enterobacteriaceae* housekeeping gene *cspF* encoding a cold shock protein (26). This finding suggests that prior to speciation, a *Photorhabdus* ancestor had acquired a TTSS as a block. As they are often plasmid encoded or located on pathogenicity islands, their mobile character has been suggested (29). In the case of the *Photorhabdus* TTSS, we did not detect the classical characteristics of a pathogenicity island (i.e., insertion into a tRNA gene and different GC content). However, four genes (*plu3747* through *plu3750*) encoding proteins similar to bacteriophage proteins were detected in the close vicinity of the *Photorhabdus*
TTSS, suggesting that the Photorhabdus TTSS may have been acquired via an integrative bacteriophage.

Third, despite the highly conserved organization and protein sequences of the core components of the secretion machinery (TTSS backbone in Fig. 1), P. luminescens is predicted to encode a protein similar to the Yersinia YopT effector whereas P. asymbiotica harbors a gene encoding a protein homologous to the P. aeruginosa ExoU effector (see below).

Distribution of the TTSS among different strains of Photorhabdus and Xenorhabdus species. To determine whether all different Photorhabdus species and subspecies (Table 1) harbor similar TTSSs, PCR amplification was performed on genomic DNA of 11 Photorhabdus strains (Table 1). In addition, seven strains of the more distantly related Xenorhabdus species were included. The oligonucleotide primer sets used (Table 2) were designed in the conserved regions of the known TTSS sequences (Fig. 1). Genes of the delivery system were named according to the nomenclature proposed by Hueck (15). For this study, the sctC/lssC, sctV/lssV/lcrD, and lopB genes were chosen because they are representative of the different parts of the injectisome located in different operons (15). Standard PCR with each primer set was performed in a 50-μl reaction volume with a Gene Amp 2400 thermocycler system (Perkin Elmer), and PCR products were subjected to 0.7% agarose gel electrophoresis for analysis. Genomic DNA from the 11 Photorhabdus strains was successfully amplified using specific primers for these three genes (Table 3). However, amplification results were negative for the seven Xenorhabdus strains, even under lower-level annealing conditions.

As a second control for the presence of the TTSS, Southern blot analysis was performed using the sctC, sctV, and lopB genes as probes. P. luminescens TT01 genomic DNA was labeled using a PCR digoxigenin DNA labeling kit, and hybridization was revealed using a digoxigenin detection kit (Roche) according to the manufacturer’s instructions. Southern blot hybridizations were performed on BglII-, EcoRI-, and HindIII-digested DNA from the previously mentioned Photorhabdus and Xenorhabdus strains (Table 1). No signal was detected using Xenorhabdus chromosomal DNA as a template even under low-stringency conditions, whereas a clear band of the expected size was visible when Photorhabdus chromosomal DNA was used as a template (data not shown). Thus, our results using PCR and Southern blotting data indicate that sctC, sctV, and lopB genes are conserved in all Photorhabdus strains. This is in agreement with a recent finding determined on the basis of a limited microarray analysis (18). Furthermore, our data suggest that species of the phylogenetically related genus Xenorhabdus (12) lack a TTSS or harbor a highly divergent system.

Phylogenetic analysis. To analyze the relatedness of the Photorhabdus TTSS and to compare it to the taxonomic position of the organism, a phylogenetic study was undertaken. We used the sctV gene (homologous to the lcrD gene of Yersinia spp.) encoding an inner-membrane protein, because sctV is among the best-conserved members of the TTSS. PCR products were isolated using a High Pure PCR purification product kit (Roche), and sequencing was performed on an ABI 3700 sequencer. Sequences were aligned using ClustalW (24), and phylogenetic trees were constructed by using the neighbor-joining method and Kimura distance values (21). A bootstrap confidence analysis was replicated 500 times (9).

The resulting trees are shown in Fig. 2. The various taxa
could be divided into five distinct groups (Fig. 2A): Ysc, Hrp1, Hrp2, Inv/Mxi/Spa, and EscC/Ssa (13); the Photorhabdus TTSS falls into the Ysc group. We extended this phylogenetic analysis to species of the genus Photorhabdus (Fig. 2B). Both clinical subspecies grouped in a single cluster. The three P. luminescens subspecies P. luminescens subsp. laumondii, P. luminescens subsp. akhurstii, and P. luminescens subsp. luminescens formed a second cluster, and the P. temperata strains formed a third cluster. Remarkably, the resulting sctV tree is similar to the 16S tree (1, 11), indicating that the TTSS phylogeny reflects the phylogeny of the group. Because the same clusters and subclusters describing genetic heterogeneity among strains belonging to the genus Photorhabdus can be distinguished, we therefore suggest that the sctV gene and probably the entire TTSS backbone were present in the Photorhabdus ancestor and were not recently independently acquired.

Analysis of the diversity of the Photorhabdus TTSS effectors. As the most remarkable elements are the genes predicted to encode the effectors, we therefore examined the two loci in which they lie in the 11 Photorhabdus strains previously mentioned. Oligonucleotide primers were selected in the flanking genes (i.e., sctL and cspI for the lopT/slcT locus and sctU and lscA for the lopU/slcU locus) and designed in conserved regions. PCR products were obtained for all 11 strains tested, and their sizes are reported in Table 3. PCR fragments were sequenced for strains Hb, DO04, Meg, 3265-86, and AU9800946, which are representatives of each subspecies. Sequences were aligned with the previously available sequences (i.e., those of strains TT01, W14, and P. asymbiotica).
For the \textit{sctC-cspI} locus, a 2,020-bp fragment containing the \textit{lopT} and the \textit{slcT} genes was amplified for all the \textit{Photorhabdus} strains and a 450-bp intergenic region was amplified for the \textit{P. asymbiotica} and \textit{P. temperata} strains. For the \textit{sctU-sctA} region, we amplified a 4.5-kb fragment containing \textit{lopU} and \textit{slcU} genes for all the \textit{P. asymbiotica} strains and a 1,000- to 1,100-bp intergenic region for \textit{P. luminescens} and \textit{P. temperata} strains. Intriguingly, no effector-encoding genes were detected in the DNA sequences at these locations in the \textit{P. temperata} strains Meg and XINach (Table 3 and Fig. 1); however, we could not rule out the possibility that they were elsewhere on the genome.

\textit{P. luminescens lopT} is predicted to encode a protein similar to the \textit{Yersinia} YopT effector. YopT is a cysteine protease (22, 23) that causes cytoskeletal disruption and contributes to the antiphagocytic effect of \textit{Yersinia} (16, 30). The \textit{P. luminescens lopT} gene is located at the 3' end of the TTSS and, as in \textit{Yersinia}, forms a bicistronic operon with a gene predicted to encode a LopT chaperone, namely, SlcT. These similarities with \textit{Yersinia} Yop/SycT proteins are highly suggestive of a similar role for their \textit{P. luminescens} counterpart, which is in agreement with the observation of LopT expression concomitant with the in vivo TTSS-dependent inhibition of phagocytosis in the orthopteran \textit{Locusta migratoria} (Brugirard-Ricaud et al., submitted for publication).

Remarkably, the \textit{P. asymbiotica} locus does not harbor \textit{yopT} homologues. However, it contains \textit{lopU}, a gene predicted to encode a protein similar to the \textit{P. aeruginosa} ExoU effector. ExoU displays a potent phospholipase activity inducing disruption of epithelial and macrophage cell lines (10). The \textit{P. asymbiotica lopU} gene is located between \textit{sctU} and \textit{exsA}-like genes and forms a probable operon with a gene predicted to encode a LopU chaperone, namely, SlcU. This location corresponds to the inversion point between the \textit{Photorhabdus} and \textit{P. aeruginosa} TTSS backbones (15).

In this report we show that all \textit{Photorhabdus} species contain a remarkably conserved TTSS backbone but that the effectors seem to belong to the flexible gene pool, as they differ considerably among the different species. Moreover, enterobacterial repetitive intergenic consensus sequences were occasionally found in the vicinity of the effector loci, suggesting that they may be recombination hot spots and may account for genome plasticity. It is therefore tempting to speculate that in contrast to the TTSS backbone, the genes encoding the effectors may have been acquired at different steps of the evolution and then

\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|c|}
\hline
Species and strain & F1/R1 (sctC) & F2/R2 (sctV) & F3/R3 (lopB) & F4/R4 (lopT-sctT) & F5/R5 (lopU-slcU) \\
\hline
\textit{Photorhabdus luminescens} subsp. \textit{luminescens} & & & & & \\
Hbb & 0.5 & 0.5 & 0.8 & 2 & 1 \\
Hm & 0.5 & 0.5 & 0.8 & 2 & 1 \\
\textit{P. luminescens} subsp. \textit{akhurstii} & & & & & \\
FRG04c & 0.5 & 0.5 & 0.8 & 2 & 1 \\
DO04 & 0.5 & 1.5b & 0.8 & 2 & 1 \\
\textit{P. luminescens} subsp. \textit{laumondii} & & & & & \\
TT01c & 0.5 & 0.5 & 0.8 & 2 & 1.1 \\
HP88 & 0.5 & 0.5 & 0.8 & 2 & 1.1 \\
\textit{P. temperata} & & & & & \\
Meg & 0.5 & 1.5b & 0.8 & 0.45 & 1.05 \\
\textit{P. temperata} subsp. \textit{temperata} & & & & & \\
XINachc & 0.5 & 0.5 & 0.8 & 0.45 & 1 \\
\textit{P. asymbiotica} & & & & & \\
3265-86c & 0.5 & 0.5 & 0.8 & 0.45 & 4.5 \\
\textit{Photorhabdus} sp. & & & & & \\
AU9805888 & 0.5 & 0.5 & 0.8 & 0.45 & —c \\
AU9800946 & 0.5 & 0.5 & 0.8 & 0.45 & —c \\
\textit{Xenorhabdus nematophila} & & & & & \\
AN6T & — & — & — & — & — \\
F1 & — & — & — & — & — \\
\textit{Xenorhabdus poinarii} & & & & & \\
G6T & — & — & — & — & — \\
\textit{Xenorhabdus bedingii} & & & & & \\
QSST & — & — & — & — & — \\
\textit{Xenorhabdus bovienii} & & & & & \\
T228T & — & — & — & — & — \\
\textit{Xenorhabdus japonica} & & & & & \\
JP02T & — & — & — & — & — \\
\textit{Xenorhabdus} sp. & & & & & \\
USTX62 & — & — & — & — & — \\
\hline
\multicolumn{6}{l}{a The presence of these genes was determined in this study using PCR assays. Amplicon sizes are reported. PCR products that were sequenced and used in phylogeny reconstructions (Fig. 2) or in comparisons (Fig. 1) are indicated in boldface characters.} \\
\multicolumn{6}{l}{b Amplification was performed using F2’/R2’ primers.} \\
\multicolumn{6}{l}{c —, no amplicon.} \\
\end{tabular}
\end{table}
have been selected according to the ecological niches and the host ranges of the different Photorhabdus species.

Nucleotide sequence accession number. The nucleotide sequences of Photorhabdus sp. strains Hb, Hm, FRG04, HP88, AU9800946, AU9800888, US3265-86, XlNach, and Meg were deposited in GenBank under accession no. AY526326, AY526331, AY526327, AY526332, AY526330, AY526333, AY656329, AY526328, and AY526334, respectively.

This work received financial support from the Institut National de la Recherche Agronomique and the Ministère de l’Industrie et des Finances (Après sevrage des Génomes). K.B.-R. was funded by a MENRT grant (2052.2001). We wish to thank Isabelle Goncalves for help with bioinformatics and Carmen Buchrieser for critical reading of the manuscript.

REFERENCES

