In Vitro Characterization of the *Bacillus subtilis* Protein Tyrosine Phosphatase YwqE

Ivan Mijakovic, 1, 3 Lucia Musumeci, 2† Lutz Tautz, 2† Dina Petranovic, 1 Robert A. Edwards, 2, 4 Peter Ruudal Jensen, 1 Tomas Mustelin, 2 Josef Deutscher, 3 and Nunzio Bottini 2*

Microbial Physiology and Genetics Group, BioCentrum, Technical University of Denmark, DK-2800 Lyngby, Denmark; 1 Inflammatory and Infectious Disease Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037; 2 Microbiologie et Génétique Moléculaire, CNRS/INRA/INRA-PG, 78850 Thierville-Grignon, France; 3 and Fellowship for the Interpretation of Genomes, Center for Microbial Sciences, San Diego State University, San Diego, California 92182*

Received 14 December 2004/Accepted 2 February 2005

Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from *Streptococcus pneumoniae*. *Bacillus subtilis* contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwIE and YfkJ. The substrates for both YwIE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwdD and YwqF. In this study, we characterize YwqE, compare the activities of the three *B. subtilis* PTPs (YwqE, YwIE, and YfkJ), and demonstrate that the two *B. subtilis* class II PTPs do not dephosphorylate the physiological substrates of YwqE.

Protein tyrosine phosphorylation, mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), in *Eukarya*, in which it participates in regulating important cellular processes, such as signal transduction and oncogenesis, has been extensively studied (12, 21). Protein phosphorylation on tyrosine residues in bacteria was discovered more recently (7) and initially reported to be involved in the regulation of extracellular polysaccharide synthesis and assembly (5, 18, 29). Recently a PTK from *Escherichia coli*, named Etk, was found to phosphorylate the sigma factor RpoH and the anti-sigma factor RseA, both implicated in the heat shock response (15). Several bacterial UDP-glucose dehydrogenases (the enzymes that convert UDP-glucose to UDP-glucuronate) were also found to be tyrosine phosphorylated by PTKs in both *E. coli* (10) and *Bacillus subtilis* (16). Tyrosine phosphorylation of all these proteins regulates their respective physiological activities.

Genes encoding bacterial PTPs are often found within the same operon as PTK-encoding genes. Bacterial PTPs dephosphorylate their cognate autophosphorylated PTKs and PTK substrates (16, 19, 27, 28). In gram-negative bacteria, most PTPs are homologues of Cys-based class II eukaryotic PTKs and protein tyrosine phosphatases (PTPs), often referred to as low-molecular-weight phosphotyrosine phosphatases (LMPTPs) (1, 5, 24, 27), while gram-positive bacteria also contain another class of PTPs in addition to LMPTPs, which resemble the phosphoesterase domain of DNA polymerase and histidinol phosphate (PHP) phosphoestersases (3). The first described representative of this new family was the Mn$_2^+$-dependent PTP CpsB from *Streptococcus pneumoniae* (4, 19), which is able to dephosphorylate its cognate PTK, CpsD, and is involved in control of capsular composition and virulence (4, 18, 20).

The *B. subtilis* operon ywqCDEF encodes the PTK YwqD and its modulator, YwqC, the PTP YwqE, and their substrate, the UDP-glucose dehydrogenase YwqF (16). The PTP YwqE, which is able to dephosphorylate both the autoprophosphorylated YwqD and its substrate, YwqF, exhibits no homology to LMPTPs but is similar to the Mn$_2^+$-dependent PTP CpsB from *Streptococcus pneumoniae* (19). While bacterial LMPTPs have been well characterized, little is known about the activities, reaction mechanisms, and substrate specificities of CpsB-like PTPs. In addition to YwqE, *B. subtilis* possesses two LMPTPs, YwIE and YfkJ, which we recently characterized biochemically (L. Musumeci et al., unpublished data). In the present study, we analyze the kinetic properties of *B. subtilis* YwqE. We also find that the LMPTPs YwIE and YfkJ are very inefficient at dephosphorylating the physiological substrates for YwqE, phosho-YwqD and phosho-YwqF in vitro and in vivo.

MATERIALS AND METHODS

Bioinformatic and statistical analyses. The comparison between amino acid sequences was performed using the ClustalW program (http://www.ebi.ac.uk/clustalw). Curve fitting and statistical analyses were performed using Prism software (GraphPad Prism version 4.00 for Mac OS X; GraphPad Software, San Diego, CA).

Reagents. Biomol Green was purchased from Biomol Research Labs (Plymouth Meeting, PA); pTyr peptides were purchased from Celtek Peptides (Nashville, TN); the phosphoserine (pSer) and phosphothreonine (pThr) peptides are commercially available from Upstate (Charlottesville, VA); *p*-Nitrophenyl-phosphate disodium (pNPP) and all other reagents were from Sigma (St. Louis, MO) or ICN Biomedicals (Irvine, CA) unless otherwise stated.

Oligonucleotide-directed mutagenesis. To obtain a set of mutant YwqE proteins, each containing one critical residue replaced by alanine, we performed PCR-based mutagenesis on the *ywqE* gene from *B. subtilis* genomic DNA. Mutations in codons 3, 5, and 7 were introduced in a PCR with mutagenic forward primers and the reverse primer YwqE–, which produced mutated full-length *ywqE* alleles in a single step. For codons 42, 136, 194, and 196, two partially

Corresponding author. Present address: The Institute for Genetic Medicine, University of Southern California, 2250 Alcazar St., CSA (IGM) 240, Los Angeles, CA 90033. Phone: (323) 442-1144. Fax: (323) 442-2764. E-mail: nunzio@usc.edu.

† These two authors contributed equally to this study.
overlapping mutagenic primers were used in separate PCRs, one with the YwqE+ forward primer to amplify the ywqE region upstream of (and including) the mutated codon and the other with the YwqE− reverse primer to amplify the ywqE region downstream of (and including) the mutated codon. The two PCR products were then mixed in the third PCR with the YwqE+ and YwqE− primers to produce full-length mutated versions of ywqE. All final PCR products were integrated in the pQE-30 vector (QIAGEN Inc., Valencia, CA), between the BamHI and the PstI restriction sites, allowing the synthesis of six-His-tagged proteins. All mutations were confirmed by DNA sequencing.

Protein expression and purification. All wild-type proteins were expressed in an *E. coli* M15 or BL21 strain transformed with plasmids bearing the corresponding genes cloned on pQE30-derived plasmids for N-terminal six-His-tagged YwqD, YwqE, and YwqF (16), pET15b-derived plasmid for N-terminal six-His-tagged YbKJ and YwqE, and pEGST+ (14) and pGEX-2T-derived plasmids, respectively, for glutathione S-transferase (GST)-YbKJ and GST-YwqC-NCter (16). Since mutated versions of six-His-tagged YwqE created in this study had reduced solubility, the proteins in pQEX30-derived plasmids were overexpressed in the chaperone overproducing strain M15[pREP4-groEI]. (2). Protein synthesis was induced by 1 mM IPTG (isopropyl-β-d-thiogalactopyranoside) during exponential growth. After 3.5 h of induction, cell pellets were sonicated and the tagged proteins were purified by single-step affinity chromatography on Ni-nitrilotriacetic acid agarose (QIAGEN Inc., Valencia, CA) for YwqE (and all its mutants), YbKJ, YwqE, YwqD, and YwqF and glutathione Sepharose 4B (Amersham Biosciences, Piscataway, NJ) for GST-YbKJ and GST-YwqC-NCter. Recombinant proteins were then either desalted on a PD-10 column, as described previously (16), or extensively dialyzed against their final buffer. The purity of recombinant proteins was consistently over 95% as determined by Coomassie staining of gels.

In *vitro* phosphatase assays. When phosphoproteptides or pNPP was used as a substrate, phosphatase assays were carried out at 30°C, and the release of inorganic phosphate was measured, the initial hydrolysis rate was plotted against the substrate concentration and all datum points were fitted simultaneously to the Michaelis-Menten or exponential growth. After 3.5 h of induction, cell pellets were sonicated and the reaction buffer caused a modest increase of the enzymatic activity for concentrations up to 0.5 M (Fig. 1C). Similar to YwqE, pH independent in the range between pH 6.5 and 9.0, suggesting that Cu²⁺ affects the catalytic mechanism of the enzyme in a different way than Mn²⁺ and Zn²⁺. Since the enzyme exhibited maximal activity at an alkaline pH in the presence of Mn²⁺, it was further characterized by using a buffer containing Mnc12_{pH} 8. Figure 1B shows that Mn²⁺ is an essential activator of YwqE, with a calculated *K*_{metal} ± standard error of 0.274 ± 0.020 mM. This value is very similar to the *K*_{metal} for Mn²⁺ of murine Eya3(AD), which belongs to a recently described new class of Asp-based eukaryotic PTPs (class IV PTPs [25]). The addition of NaCl to the reaction buffer caused a modest increase in the enzymatic activity for concentrations up to 150 M (Fig. 1C). Similar to YwqE, *S. pneumoniae* CpsB also showed optimal pH in the basic range and Mn²⁺ dependency (4, 19). The two enzymes might differ in their patterns of sensitivity to other cations, as CpsB has been reported to be activated by Mg²⁺ and to be insensitive to Cu²⁺ and Zn²⁺ (19). Optimal pHs in the basic range and ion dependency clearly differentiate CpsB-like enzymes from Cys-based eukaryotic and prokaryotic PTPs, which have optimal pH in the acidic range and do not require metal ions for their activities. Activation of YwqE by Cu²⁺ is interesting, as Cu²⁺ is a known inhibitor of Cys-based PTPs. Given its wide pH range of action, Cu²⁺ might be a physiological cofactor of the enzyme. Further biochemical and in vivo studies are needed to establish the relevance of different ions for the physiological activity of YwqE.

The kinetic parameters of YwqE activity were then assayed using pNPP as a substrate, in 50 to 100 mM HEPES-KOH buffer, pH 8.0, containing 1 mM Mnc12_{pH}. YwqE dephosphorylated pNPP following a Michaelis-Menten kinetics (data not shown). The *K*_m ± standard error was 0.345 ± 0.043 mM, which is similar to the values reported for several eukaryotic and prokaryotic Cys-based PTPs and for eukaryotic class IV

RESULTS AND DISCUSSION

Biochemical characterization of B. subtilis YwqE. Since little is currently known about the activities, reaction mechanisms, and substrate specificities of the CpsB family PTPs, we performed an in vitro biochemical analysis of YwqE, using both pNPP and a standard tyrosine phosphopeptide as substrates. In the absence of cations, the activity of YwqE on pNPP was barely detectable in the reaction mixture in the pH range between 6.5 and 9.0. In the same pH range, 1 mM Mn²⁺, 1 mM Cu²⁺ and 1 mM Zn²⁺ were able to activate the enzyme, while 1 mM Mg²⁺ or 1 mM Ca²⁺ did not have any effect (Fig. 1A and data not shown). Figure 1A shows the pH-activity profile of the enzyme in the presence of Mn²⁺, Cu²⁺ and Zn²⁺. In the presence of 1 mM Mn²⁺ or 1 mM Zn²⁺, YwqE activity increased with increasing pHs, and there was a significant positive correlation between activity and pH (the Spearman r was 1.00 and the two-tailed *P* was 0.017 for Mn²⁺, and the Spearman r was 0.92 and the two-tailed *P* was 0.027 for Zn²⁺). On the other hand, activation of the enzyme by Cu²⁺ was relatively pH independent in the range between pH 6.5 and 9.0, suggesting that Cu²⁺ affects the catalytic mechanism of the enzyme in a different way than Mn²⁺ and Zn²⁺. Since the enzyme exhibited maximal activity at an alkaline pH in the presence of Mn²⁺, it was further characterized by using a buffer containing Mnc12_{pH} 8. Figure 1B shows that Mn²⁺ is an essential activator of YwqE, with a calculated *K*_{metal} ± standard error of 0.274 ± 0.020 mM. This value is very similar to the *K*_{metal} for Mn²⁺ of murine Eya3(AD), which belongs to a recently described new class of Asp-based eukaryotic PTPs (class IV PTPs [25]). The addition of NaCl to the reaction buffer caused a modest increase in the enzymatic activity for concentrations up to 0.5 M (Fig. 1C). Similar to YwqE, *S. pneumoniae* CpsB also showed optimal pH in the basic range and Mn²⁺ dependency (4, 19). The two enzymes might differ in their patterns of sensitivity to other cations, as CpsB has been reported to be activated by Mg²⁺ and to be insensitive to Cu²⁺ and Zn²⁺ (19). Optimal pHs in the basic range and ion dependency clearly differentiate CpsB-like enzymes from Cys-based eukaryotic and prokaryotic PTPs, which have optimal pH in the acidic range and do not require metal ions for their activities. Activation of YwqE by Cu²⁺ is interesting, as Cu²⁺ is a known inhibitor of Cys-based PTPs. Given its wide pH range of action, Cu²⁺ might be a physiological cofactor of the enzyme. Further biochemical and in vivo studies are needed to establish the relevance of different ions for the physiological activity of YwqE.

The kinetic parameters of YwqE activity were then assayed using pNPP as a substrate, in 50 to 100 mM HEPES-KOH buffer, pH 8.0, containing 1 mM Mnc12_{pH}. YwqE dephosphorylated pNPP following a Michaelis-Menten kinetics (data not shown). The *K*_m ± standard error was 0.345 ± 0.043 mM, which is similar to the values reported for several eukaryotic and prokaryotic Cys-based PTPs and for eukaryotic class IV
PTPs (6, 11, 25). The \(k_{cat} \) standard error for \(pNPP \) was 0.022 ± 0.001 s\(^{-1}\). This \(k_{cat} \) value is much lower than those reported for other eukaryotic PTPs and for some bacterial PTPs (9, 19, 26, 27; Musumeci et al., unpublished data). The \(YwqE \) \(k_{cat} \) is only somewhat lower than the one reported for \(Staphylococcus aureus \) PtpB (26) and similar to the \(k_{cat} \) of \(B. subtilis \) YwlE (Musumeci et al., unpublished data).

Figure 1D shows that \(YwqE \) was also able to dephosphorylate the tyrosine phosphopeptide KRLIEDNE(pY)TARGQ (derived from the autophosphorylation site of the mammalian Tyr kinase Lck) following Michaelis-Menten kinetics. The \(YwqE \) \(k_{cat} \) is only somewhat lower than the one reported for \(S. aureus \) PtpB (26) and similar to the \(k_{cat} \) of \(B. subtilis \) YwlE (Musumeci et al., unpublished data).

PTPs (6, 11, 25). The \(k_{cat} \) ± standard error for \(pNPP \) was 0.022 ± 0.001 s\(^{-1}\). This \(k_{cat} \) value is much lower than those reported for other eukaryotic PTPs and for some bacterial PTPs (9, 19, 26, 27; Musumeci et al., unpublished data). The \(YwqE \) \(k_{cat} \) is only somewhat lower than the one reported for \(S. aureus \) PtpB (26) and similar to the \(k_{cat} \) of \(B. subtilis \) YwlE (Musumeci et al., unpublished data).

Figure 1D shows that \(YwqE \) was also able to dephosphorylate the tyrosine phosphopeptide KRLIEDNE(pY)TARGQ (derived from the autophosphorylation site of the mammalian Tyr kinase Lck) following Michaelis-Menten kinetics. The \(YwqE \) \(k_{cat} \) ± standard error was 0.054 ± 0.008 mM, and the \(k_{cat} \) ± standard error was 0.016 ± 0.001 s\(^{-1}\). As shown in Fig. 1E, \(YwqE \) was completely unable to dephosphorylate the serine phosphopeptide RRA(pS)VA and the threonine phosphopeptide KR(pT)IRR, which are good substrates of the serine-threonine phosphatases PP1 and PP2A (8). Among PTP inhibitors, 1 mM iodoacetamide and \(N \)-ethylmaleimide (NEM) had minimal effects, while Na\(_3\)VO\(_4\) was an efficient inhibitor of \(YwqE \) (Table 1 and Fig. 1F). Vanadate was found to inhibit the enzyme with a competitive mechanism and a \(K_i \) ± standard error of 14 ± 3 \(\mu \)M (data not shown). Among classical serine-threonine phosphatase inhibitors, 1 mM sodium fluoride (NaF) did not affect the phosphatase activity (Table 1), while 1 mM sodium pyrophosphate (NaPP) was found to inhibit the phosphatase (Table 1). Inhibition by NaPP was subsequently found to happen only at concentrations higher than 0.5 mM (data not shown), and it might be of physiological relevance, as, depending on the growth conditions, \(B. subtilis \) contains between 1.2 and 6 mM pyrophosphate (17). The described pattern of substrate specificity and sensitivity to inhibitors is in line with \(YwqE \) being a PTP in vivo. \(YwqE \) activity was relatively insensitive to iodoacetamide and NEM, two classical inhibitors of Cys-based PTPs (including LMPTPs) which form covalent ad-
ducts with the sulfhydryl group of the catalytic Cys residue. This suggests that the catalytic mechanism of YwqE is different from the one used by LMPTPs and other PTPs and does not involve a Cys residue.

Since the CpsB-like phosphatases share homology with the PHP family of phosphoesterases, a representative of PHP phosphoesterases from Yersinia pestis was aligned with B. subtilis YwqE and its homologues from different gram-positive bacteria (Fig. 2). Our multiple alignment revealed several 100% conserved residues, some of which have been previously suggested to be critical for catalysis (3). Although the active site and catalytic mechanism of CpsB-like phosphatases are currently not defined, the conserved histidines and aspartates were suggested to participate in cation binding (3). We performed site-directed mutagenesis of all conserved charged amino acid residues (two aspartates and five histidines) indicated in Fig. 2 (residues D3, H5, H7, H42, H136, D194, and H196), thus creating a set of YwqE mutant proteins, each bearing an alanine in place of one of these residues. The levels of phosphatase activity of all altered versions of YwqE created in this study were considerably diminished compared to the wild-type protein (Table 2), suggesting that all the conserved charged residues are fundamental for the catalytic integrity of YwqE.

<table>
<thead>
<tr>
<th>Phosphatase inhibitor (concen) or condition</th>
<th>% Relative activity ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inhibitor</td>
<td>100.0 ± 0.5</td>
</tr>
<tr>
<td>Iodoacetamide (1 mM)</td>
<td>100.9 ± 0.6</td>
</tr>
<tr>
<td>NEM (1 mM)</td>
<td>137.7 ± 0.6</td>
</tr>
<tr>
<td>NaF (1 mM)</td>
<td>85.0 ± 1.2</td>
</tr>
<tr>
<td>NaPP (1 mM)</td>
<td>31.2 ± 1.6</td>
</tr>
</tbody>
</table>

*Inhibitors were added to the reaction buffer at a final concentration of 1 mM. Iodoacetamide and NEM were preincubated with the enzyme for 10 min on ice. The assay mixture contained 300 nM enzyme and 3 mM of pNPP as the substrate. The buffer used was 50 mM HEPES, pH 8.0, and 1 mM MnCl₂.

![FIG. 2. Multiple alignment of Bacillus subtilis (Bsubt) YwqE and its homologues from different gram-positive bacteria, as follows: Bacillus cereus (Bcere), Oceanobacillus iheyensis (Oihen), Lactococcus lactis (Llact), Streptococcus suis (Ssuis), Streptococcus pneumoniae (Spneu), and Streptococcus thermophilus (Sther). The PHP phosphoesterase from Yersinia pestis (YpestPHP) was added as the outgroup. Residues conserved in both PHP phosphoesterases and YwqE homologues are highlighted. Residues mutated in this study are designated by arrows.](http://jb.asm.org/)

TABLE 1. Effects of phosphatase inhibitors on YwqE activity

<table>
<thead>
<tr>
<th>Phosphatase inhibitor (concen) or condition</th>
<th>% Relative activity ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inhibitor</td>
<td>100.0 ± 0.5</td>
</tr>
<tr>
<td>Iodoacetamide (1 mM)</td>
<td>100.9 ± 0.6</td>
</tr>
<tr>
<td>NEM (1 mM)</td>
<td>137.7 ± 0.6</td>
</tr>
<tr>
<td>NaF (1 mM)</td>
<td>85.0 ± 1.2</td>
</tr>
<tr>
<td>NaPP (1 mM)</td>
<td>31.2 ± 1.6</td>
</tr>
</tbody>
</table>

*Inhibitors were added to the reaction buffer at a final concentration of 1 mM. Iodoacetamide and NEM were preincubated with the enzyme for 10 min on ice. The assay mixture contained 300 nM enzyme and 3 mM of pNPP as the substrate. The buffer used was 50 mM HEPES, pH 8.0, and 1 mM MnCl₂.

FIG. 2. Multiple alignment of Bacillus subtilis (Bsubt) YwqE and its homologues from different gram-positive bacteria, as follows: Bacillus cereus (Bcere), Oceanobacillus iheyensis (Oihen), Lactococcus lactis (Llact), Streptococcus suis (Ssuis), Streptococcus pneumoniae (Spneu), and Streptococcus thermophilus (Sther). The PHP phosphoesterase from Yersinia pestis (YpestPHP) was added as the outgroup. Residues conserved in both PHP phosphoesterases and YwqE homologues are highlighted. Residues mutated in this study are designated by arrows.
the enzyme. In line with our observations, residues homologous to D194 and H196 have been mutated in *S. pneumoniae* CpsB and caused a complete loss of its phosphatase activity (19). Further analyses are needed to assess if the reduced activity of each mutant is due to overall structural destabilization of the protein or to the participation of the residue in the enzyme catalytic mechanism.

B. subtilis LMPTPs are not able to dephosphorylate YwqE substrates in vitro and in vivo. In addition to YwqE, *B. subtilis* possesses two LMPTPs, YwI and YfkJ. Gram-negative LMPTPs are known to dephosphorylate substrates encoded in different operons (10, 15) and show much higher activity than YwqE when assayed in vitro with pNPP as a substrate. The *E. coli* LMPTP Wzb efficiently dephosphorylates its cognate kinase Wzc, which is partly homologous to YwqD (27). We recently characterized the *B. subtilis* LMPTPs YfkJ and YwI by using pNPP as a substrate and found that YfkJ has 10-times-higher activity than YwqE, and YwI has a similar activity compared to YwqE (Musumeci et al., submitted for publication). Despite having similar activity on pNPP, the LMPTP YwI was very inefficient in dephosphorylating YwqE substrates phospho-YwqD and phospho-YwqF in vitro (16). In order to compare the activities of the three *B. subtilis* phosphatases on the physiological substrates for YwqE, we assayed

![Graphs showing the activities of YwqE, YfkJ, and YwI](http://www.lsbu.ac.uk/biology/enztech/inhibition.html)

FIG. 3. Comparison of the activities of YwqE (A), YfkJ (B), and YwI (C) on the phosphopeptide LSKHSEYGY(pY)GTKDNFMQK derived from the last 19 aa of YwqD and including pTyr228, a known dephosphorylation site of YwqE. The buffers used were 100 mM HEPES, pH 8.0, and 1 mM MnCl₂ for YwqE; 100 mM bis-Tris, pH 6.0, and 1 mM dithiothreitol for YfkJ; and 100 mM MES (morpholineethanesulfonic acid), pH 5.5, and 1 mM dithiothreitol for YwI. Continuous lines in all graphs are nonlinear fits of the experimental data to the Michaelis-Menten equation. When error bars are not present in the graph, they are within the resolution of the datum points. (D) Table with a comparison of the Michaelis-Menten parameters of the three phosphatases for the mentioned peptide. YwI shows a kinetic of substrate inhibition when using pNPP as a substrate (Musumeci et al., unpublished data), and the dotted line in panel C shows a nonlinear fit of experimental data to the Michaelis-Menten equation for substrate inhibition (see the London South Bank University Faculty of Engineering, Science and the Built Environment website [http://www.lsbu.ac.uk/biology/enztech/inhibition.html]).

TABLE 2. Mutation of critical residues affects YwqE enzymatic activity

<table>
<thead>
<tr>
<th>YwqE protein or mutant</th>
<th>% Relative activity ± SE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type................ ... 100.0 ± 8.4</td>
<td></td>
</tr>
<tr>
<td>D3A .. 8.1 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>H5A ... 9.5 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>H7A ... 6.3 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>H42A ... 6.8 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>H136A ... 7.7 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>D194A ... 5.4 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>H196A ... 4.1 ± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

The assay contained 2 μg YwqE and 3 mM of pNPP as the substrate. The buffer used was 50 mM HEPES, pH 8.0, and 1 mM MnCl₂.
them in their optimal buffers with an YwqD-derived phosphopeptide as a substrate. Figure 3A, B, and C show the kinetic parameters of the three B. subtilis PTPs when dephosphorylating the phosphopeptide LSKHSEYGY(pY)GTKDN, which is derived from the C-terminal tail of YwqD and includes Tyr228, a known target of YwqE-catalyzed dephosphorylation (16). All three phosphatases were able to dephosphorylate the peptide following Michaelis-Menten kinetics to a certain extent, but YwqE was the most efficient and showed the lowest K_{m}, while YwIE was quite inefficient (Fig. 3D). Despite showing a higher K_{m} than YwqE, YfkJ showed activity almost comparable to YwqE in the assays with the phosphopeptide (Fig. 3D). When we repeated the assays using a more physiological buffer at a neutral pH and full-length phospho-YwqD or phospho-YwqF as a substrate, YfkJ was completely unable to dephosphorylate phospho-YwqF and was much less active than YwqE when assayed using phospho-YwqD as a substrate (Fig. 4A). The observed differences in kinetic parameters between YwqE and YfkJ when a synthetic phosphopeptide or full-length substrates were used as in vitro substrates suggest that global steric recognition between the phosphatases and the full-length substrates plays an important role in determining the specificity of YwqE.

In order to confirm in vivo the finding that B. subtilis LMPTPs do not or only poorly dephosphorylate YwqE substrates, we compared the effects of ywqE, ywlE, and yfkJ gene inactivation on the enzymatic activity of UDP-glucose dehydrogenases in B. subtilis. Besides containing YwqF, B. subtilis contains another UDP-glucose dehydrogenase, TuaD (22), which is also controlled by tyrosine phosphorylation in the same way as its ortholog YwqF (16). The inactivation of any PTP capable of dephosphorylating UDP-glucose dehydrogenases should provoke the accumulation of the phosphorylated, active form of these enzymes, leading to an increase in the UDP-glucose dehydrogenase activity in B. subtilis. It was previously shown that the UDP-glucose dehydrogenase activity of a dialyzed protein extract prepared from a ΔywqE strain was considerably higher than the activity of the extract from wild-type B. subtilis (16). We measured the UDP-glucose dehydrogenase activity of dialyzed protein extracts prepared from ΔywIE and ΔyfkJH strains, and the obtained values were almost identical to that of the extract of the wild-type strain (Fig. 4B). This finding strengthened our observation that YwIE and YfkJ are unable to dephosphorylate phospho-YwqD and phospho-YwqF in vitro and suggested that YwqE is the only PTP in B. subtilis with a significant influence on the activity of UDP-glucose dehydrogenases of this organism in vivo described so far. Redundancy between PTPs is not common in Eukarya and should be even less likely in bacteria, as they usually encode a very small number of PTPs in their genomes (13) and should follow the scheme “one phosphatase for many substrates” rather than “one substrate for many phosphatases.”

ACKNOWLEDGMENTS

This work was supported by grants of the Institut National de la Recherche Agronomique, the Centre National de la Recherche Scientifique, and the Institut National Agronomique Paris-Grignon (to I.M., D.P., and J.D.), the Danish National Research Council (to I.M.), and the National Institutes of Health (to T.M.). We thank Marta Perego (The Scripps Research Institute, La Jolla, CA) for help with the experimental error evaluations and statistical analyses of the data.

REFERENCES

