A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of *Burkholderia cenocepacia* to Antimicrobial Peptides and Bacterial Survival In Vivo

Slade A. Loutet, Ronald S. Flannagan, Cora Kooi, Pamela A. Sokol, and Miguel A. Valvano

Infectious Diseases Research Group, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, and Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada

Received 28 September 2005/Accepted 21 December 2005

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of *B. cenocepacia* is important for both virulence and resistance to antimicrobial peptides. We identified *hldA* and *hldD* genes in *B. cenocepacia* strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both *hldA* and *hldD*, and by performing complementation studies we confirmed that the functions encoded by both of these *B. cenocepacia* genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another *B. cenocepacia* mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the *B. cenocepacia* LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Burkholderia cepacia was originally isolated in 1950 as the causative agent of onion soft rot (6) and is now classified as a member of the *B. cepacia* complex (Bcc), a group of at least nine closely related bacterial species that are phenotypically similar but genetically distinct (11, 33). These metabolically diverse bacteria have been isolated from numerous environmental sources, including soil, water, and plants (14, 31, 32). Due to their metabolic diversity, Bcc members have been extensively studied as potential tools for bioremediation of pollution, such as trichloroethylene (30). However, over the last 20 years Bcc bacteria have emerged as important opportunistic pathogens, particularly in individuals suffering from cystic fibrosis (CF) (26).

Chronic lung infections develop in CF patients, and treatment of Bcc infections has proven to be difficult due to the inherent resistance of Bcc bacteria to most clinically relevant antibiotics (40). In a subset of CF patients infected with Bcc bacteria, the infection evolves into a fatal, necrotizing pneumonia known as cepacia syndrome (26). This severe clinical outcome is not usually observed with other CF lung pathogens, such as *Pseudomonas aeruginosa*. Transmission of Bcc bacteria between CF patients has been documented and has led to the segregation of Bcc-infected CF patients (15, 18). All members of the Bcc have been isolated from CF patients; however, in North America *Burkholderia cenocepacia* is the species that is most commonly found (46) and is therefore the species we focused on in this study.

A remarkable characteristic of Bcc bacteria is their innate resistance to a wide variety of antimicrobial compounds, including their high levels of resistance to antimicrobial peptides (34). Antimicrobial cationic peptides are a group of almost 900 naturally occurring, small, positively charged proteins with antimicrobial activities. They are produced by a variety of species, including invertebrates, plants, and mammals (4). In humans, antimicrobial peptides are part of the innate immune response to bacterial infections and have been implicated in the antimicrobial activities of phagocytes, inflammatory body fluids, and epithelial secretions, including airway epithelial cells (47, 53).

Permeabilization of bacterial membranes is a crucial step in the antimicrobial activity of these peptides (4), but recent evidence shows that they also inhibit a variety of essential microbial processes, such as protein, cell wall, and nucleic acid synthesis (5, 43).

Bacteria have a number of different mechanisms to resist the effects of antimicrobial peptides, including alteration of their surface charge, proteolytic degradation, and export of peptides by efflux pumps (3, 44, 48). Some gram-negative bacteria, such as *Klebsiella pneumoniae*, possess capsular polysaccharides that contribute to antimicrobial peptide resistance (8). In addition, the various components of lipopolysaccharide (LPS) have been shown to be important for the resistance of gram-negative organisms to antimicrobial peptides. LPS O antigen plays a role in the resistance to antimicrobial peptides in *Bordetella*.
Bronchiseptica (1), while the outer core and inner core regions contribute to the resistance of Yersinia enterocolitica (50) and Escherichia coli (16) to antimicrobial peptides, respectively. In addition, the LPS molecules of many gram-negative organisms are modified upon exposure to antimicrobial peptides, and the modifications contribute to increased bacterial resistance to peptides. In Salmonella enterica serovar Typhimurium, exposure to antimicrobial peptides results in the modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) (21). Other LPS modifications that confer antimicrobial peptide resistance include palmitoylation and myristoylation of lipid A (22, 52). The Ara4N modification of lipid A is thought to be constitutive in B. cenocepacia and probably critical for its innate resistance to antimicrobial peptides (13), but there may be other mechanisms of resistance.

The LPS structure of B. cenocepacia strains has not been completely elucidated. We have investigated the composition and structure of the O antigen in strain K56-2 (42), and the structure of the lipid A moiety of a B. cepacia (formerly genovar I) strain has recently been reported (49). Also, partial core structures of B. cepacia strains GIFU 645 and ATCC 25416 have been elucidated (19, 28). In Fig. 1A, we present a proposed structure for the inner core region in B. cenocepacia, taking into account the high level of conservation of the inner core region in Burkholderia species (19, 27, 38). This region contains at least one residue of deoxy-manno-octulosonic acid, glycerol-talo-octulosonic acid, and three glycerol-manno-heptoses (Fig. 1A). In addition, the glycerol-talo-octulosonic acid residue may be substituted with Ara4N. To better understand the role of LPS in the resistance of B. cenocepacia to antimicrobial peptides, we sought to truncate the LPS molecule by disrupting the biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose. Nucleotide-activated heptose is a precursor for the assembly of the inner core oligosaccharide region of LPS, which is mediated by specific heptosyltransferases. This pathway has been extensively characterized in our laboratory and is highly conserved among gram-negative bacteria (30, 36, 54). Hallmarks of this pathway include the sequential kinase and phosphatase reactions that result first in the formation of D-glycero-β-D-manno-heptose 1,7-biphosphate and then in the synthesis of D-glycero-β-D-manno-heptose 1-phosphate, which are mediated by the enzymes HldE and GmhB, respectively (55). HldE is a bifunctional enzyme that consists of a kinase domain and an ADP transferase domain (36). However, in some bacteria each domain is separately encoded by the genes hldA (kinase) and hldC (ADP transferase) (55), which may or may not be part of the same genetic unit. D-glycero-β-D-manno-heptose is further converted into ADP-D-glycero-β-D-manno-heptose (by the ADP transferase domain of HldE or the HldC protein) and finally into ADP-L-glycero-β-D-manno-heptose (29). This last step is mediated by the HldD epimerase. A diagram of a truncated form of LPS is shown in Fig. 1B. Although disruption of the ADP-L-glycero-β-D-manno-heptose synthesis pathway should not affect the Ara4N modifications of lipid A, phosphate groups covalently linked to the heptose moieties of the inner core have been shown to bind divalent cations that are important for maintaining proper outer membrane stability and permeability (23). For some bacteria, including P. aeruginosa, the heptose moieties are believed to be essential for bacterial survival (56). In this paper, we describe identification of the B. cenocepacia hldA and hldD genes and show that a mutant strain lacking a complete LPS core oligosaccharide is sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1 (HNP-1) and cannot survive in a rat model of lung infection.

MATERIALS AND METHODS

Bacterial strains and culture conditions. E. coli and B. cenocepacia strains used in this study are described in Table 1. All strains were grown at 37°C on LB plates containing 1.5% Bacto agar or in liquid LB medium. B. cenocepacia strains were also grown on Mueller-Hinton (MH) agar plates containing 1.5% agarose for testing susceptibility to HNP-1 (see below). Trimethoprim (50 μg/ml for E. coli and 100 μg/ml for B. cenocepacia) and chloramphenicol (30 μg/ml for E. coli and 100 μg/ml for B. cenocepacia) were used for selection of mutations and maintenance of complementing plasmids. Kanamycin (25 μg/ml) was used to maintain E. coli mutants FAM3 and SAL7. Gentamicin (25 μg/ml) was used during triparental mating to select against the donor and helper strains. All antibiotics were purchased from Sigma Chemical Co., St. Louis, Mo.

Mutagenesis and cloning. All plasmids used in this study are described in Table 1. B. cenocepacia mutants SAL1 and SAL2 were constructed using the pGEM-TET system, which will be described in greater detail elsewhere (Flannagan and Valzano, unpublished data). Briefly, an internal fragment of the targeted gene was used to generate single-crossover insertions of a suicide plasmid into the gene of interest. Omega fragments incorporated into the gene prevented expression of downstream genes. The plasmid was introduced into B. cenocepacia strain K56-2 by triparental mating, and mutants were selected by growth on trimethoprim. Putative mutants were first screened by PCR for disruption of the gene and then confirmed by Southern blot hybridization. Three PCR-positive, Southern blot-positive clones were screened for both mutants to ensure that the mutant phenotypes were consistent. RSF19 was generated by insertion of the pGEM-TET system, which upon integration into bhe:1 resulted in a polar mutation (Flannagan and Valzano, unpublished). Internal fragments were amplified using the following primers (underlined regions indicate restriction enzyme cut sites used for cloning, and the enzymes are indicated in parentheses): for SAL1, primers 5'-TTA TCTAGAGATCCGACCCTTGTAATG-3' (XbaI) and 5'-TACTCTAGAAGC ACGGCCGACGGATTGACG-3' (XbaI); for SAL2, primers 5'-TAATTTCTAGATT TAAACACGACCGCAG-3' (XbaI) and 5'-TACTCTAGAAGGGGCG GCACACCGTCG-3' (XbaI); and for RSF19, primers 5'-TTGAATATCCAGGCG GCACACCGTCG-3' (XbaI).
CGTCAAGGCGCGG-3′ (EcoRI) and 5′-TTTGGCAACGGGTCGACGTGG ACG-3′ (Sall). The fragments were amplified with ProProofstart DNA polymerase (QIAGEN Inc., Mississauga, Ontario, Canada) with the following thermal cycling conditions: 95°C for 2 min, followed by 28 cycles of 95°C for 1 min, 57°C for 1 min, and 72°C for 1 min and a final extension at 72°C for 5 min. Amplification of hldD and hldA genes. For amplification of hldD from B. cenocepacia, hldD-3′ and 5′-TAATCCGACCATGGA TACTTCGCCGAAAGTCG-3′ (NdeI) and 5′-TAATCTAGACGGCCGATGC GCTCAGTG-3′ (XbaI) were used; for amplification of hldD primers 5′-TAATCC CATATGACCTCATGACCGGC-3′ (NdeI) and 5′-TAATCTAGACGA CCGGCGGTATTAC-3′ (XbaI) were used; and for amplification of hldAD primers 5′-TAATCTAGATGAAATATATGCGACG-3′ (NdeI) and 5′-TAATCTAGACGA CCGGCGGTATTAC-3′ (XbaI) were used. Individual genes were amplified using QIAGEN ProProofstart DNA polymerase with the following thermal cycling conditions: 95°C for 2 min, followed by 29 cycles of 95°C for 1 min, 57°C for 1 min, and 72°C for 1 min and a final extension at 72°C for 5 min. Amplification of hldA and hldD together was done using the thermal cycling conditions described above with the extension time lengthened to 2 min. Reverse transcription-PCR was performed as previously described (42) to determine cotranscription of the hldA and hldD genes.

LPS analysis. LPS was extracted as previously described (24, 35), with some modifications. Briefly, bacteria were grown on plates overnight. Cells were scraped from the plates, resuspended in phosphate-saline buffer, lysed in buffer containing 2% sodium dodecyl sulfate (SDS), 4% β-mercaptoethanol, and 1 M Tris (pH 8.6), and boiled for 10 min. The lysate was subsequently treated with DNase I for 30 min at 37°C and with proteinase K for 60 min at 65°C and stored at −20°C. LPS was separated on 16.4% Tricine–SDS–polyacrylamide gel electrophoresis gels and fixed overnight in buffer containing 60% methanol and 10% acetic acid. The gels were stained in a solution containing 0.67% AgNO3.

Disk and drop diffusion assays. Disk diffusion assays were used to test the susceptibility of B. cenocepacia strains to novobiocin and SDS. Briefly, logarithmic-phase cells were spread on agar plates, and dry dishes were applied to the surface. Eight microliters of a solution containing 0.25 to 20 mg/ml novobiocin or 10% SDS or distilled H2O was added to the dishes in triplicate. The cultures were incubated for 16 h at 37°C, and zones of inhibition were measured. A similar assay was used to test for susceptibility to the β-defensin HNP-1 (Sigma). HNP-1 was dissolved in 0.2% bovine serum albumin (BSA)–0.01% acetic acid. Cells were spread on MH agarose plates, and 5-μl drops of peptide (25, 50, and 100 μg/ml) were pipetted directly onto the surfaces of the plates in duplicate. The drops were allowed to dry, and the plates were inverted, incubated for 16 h at 37°C, and scanned.

MIC_{μg} assay. Bacteria were grown in liquid cultures overnight, diluted into fresh media the next morning, and grown to the logarithmic phase (optical density at 600 nm, 0.2 to 0.4). Bacterial density was determined by measuring the optical density at 600 nm, and cells were diluted to obtain a concentration of 2 × 10⁶ CFU/ml. Polymyxin B (Sigma) and melittin (Sigma) were dissolved in 0.2% BSA–0.01% acetic acid buffer to obtain a concentration of 5.12 mg/ml and then serially diluted to obtain a concentration of 10 μg/ml. Bacterial cultures (200 μl) were treated in Eppendorf tubes with 22 μl of peptide dilutions or buffer (final peptide concentrations, 0 to 512 μg/ml). The cultures were incubated at 37°C for 16 h, and the final density was determined by determining the optical density at 600 nm. All dilutions were tested in triplicate. The MIC_{μg} was defined as the lowest peptide concentration at which growth was inhibited by 50% or more. Alternatively, stationary-phase cells were used in the assay.

Polymyxin B sensitivity assay. Logarithmic-phase cells were diluted to obtain a concentration of 2 × 10⁶ CFU/ml, and 100 μl (2 × 10⁵ CFU) of each bacterial culture was treated with 100 μg/ml polymyxin B in 0.2% BSA–0.01% acetic acid buffer or with buffer alone. The cultures were incubated for 2 h at 37°C with rotation in a Barnstead Thermolyne LABQUAKE (Barnstead International, Dubuque, Iowa). After treatment, viable cells were enumerated. For time course analysis experiments, 400-μl cultures were used, 10-μl aliquots were removed at each time, and viable cells were enumerated.

Rat agar bead model of chronic lung infection. The cationic peptide of the SAL1 mutant was determined as previously described (25) by using the rat agar

TABLE 1. Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>F′ ΔlacZAM15 Δ(lacZΔZmr-argF)U169 endA1 recA1 hsdR17</td>
<td>Laboratory stock</td>
</tr>
<tr>
<td>SY327</td>
<td>araDΔ(lac pro ArgE)MrecA56 rifsR nalA λ pir</td>
<td>38</td>
</tr>
<tr>
<td>SØ874</td>
<td>lacZ trp Δ(dbc8-rfb) upp relA rpsL λ</td>
<td>40</td>
</tr>
<tr>
<td>FAM3</td>
<td>SØ874, hldDE1 Km′</td>
<td>37</td>
</tr>
<tr>
<td>SAL7</td>
<td>SØ874, hldD Km′</td>
<td>This study</td>
</tr>
<tr>
<td>Burkholderia cenocepacia strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K56-2</td>
<td>ET12 clone, CF clinical isolate</td>
<td>BCRRC<sup>b</sup></td>
</tr>
<tr>
<td>SAL1</td>
<td>K56-2, hldA::pSL5 Tp′</td>
<td>This study</td>
</tr>
<tr>
<td>SAL2</td>
<td>K56-2, cysteine synthase B::pSL12 Tp′</td>
<td>This study</td>
</tr>
<tr>
<td>RSPF19</td>
<td>K56-2, wbxA::pRF201 Tp′</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pGPF-ΩTp</td>
<td>oriR6K Tp′</td>
<td>This study</td>
</tr>
<tr>
<td>pRF200</td>
<td>poriR6K Tp′</td>
<td>This study</td>
</tr>
<tr>
<td>pRF201</td>
<td>pRF200, 320-bp wbxE mutagenesis fragment</td>
<td>This study</td>
</tr>
<tr>
<td>pRK2013</td>
<td>RK2 derivative, Km′ mob′ tra′ ori<sup>ori1</sup></td>
<td>17</td>
</tr>
<tr>
<td>pSL5</td>
<td>pGPF-ΩTp, 273-bp hldA mutagenesis fragment</td>
<td>This study</td>
</tr>
<tr>
<td>pSL12</td>
<td>pGPF-ΩTp, 315-bp cysteine synthase B mutagenesis fragment</td>
<td>This study</td>
</tr>
<tr>
<td>pSChra2B</td>
<td>pMLBAD with P<sub>lac</sub> (lac-protein inducible promoter), Tp′</td>
<td>9</td>
</tr>
<tr>
<td>pSL3</td>
<td>pSChra2B, B. cenocepacia hldA</td>
<td>This study</td>
</tr>
<tr>
<td>pSL6</td>
<td>pSChra2B, chloramphenicol resistance cassette, Tp′ Cm′</td>
<td>This study</td>
</tr>
<tr>
<td>pSL7</td>
<td>pSL6, B. cenocepacia hldDA</td>
<td>This study</td>
</tr>
<tr>
<td>pSL8</td>
<td>pSL6, B. cenocepacia hldA</td>
<td>This study</td>
</tr>
<tr>
<td>pSL9</td>
<td>pSL6, B. cenocepacia hldD</td>
<td>This study</td>
</tr>
</tbody>
</table>

^a Tp, trimethoprim; Cm, chloramphenicol; Km, kanamycin; Ap, ampicillin.

^b BCRRC, B. cenocepacia Research and Reference Repository for Canadian CF Clinics.

References

studies, we used direction, suggesting that they form a five-gene operon. In our the Wellcome Trust Sanger Institute (http://www.sanger.ac.uk hydrogenase and a putative conserved membrane protein (Fig. 2).

directly upstream of hldA codes a product with homology to cysteine synthase B, while
hldA gene. (A) E. coli S0874 heptokinase (hldE1) mutant FAM3 complemented with the B. cenocepacia hldA gene. (B) E. coli S0874 epimerase (hldD) mutant SAL7 complemented with the B. cenocepacia hldD gene. + and −, absence and presence, respectively, of 0.2% rhamnose for induction of gene expression.

FIG. 2. Genomic organization of the hld gene cluster. The solid boxes represent internal fragments used for mutagenesis. The dotted line represents the region amplified by reverse transcription-PCR, demonstrating cotranscription of hldA and hldD.

bead model of chronic infection (10). Briefly, the lungs of six rats were inoculated intratracheally with agar beads containing approximately 2×10^6 wild-type and mutant cells at a 1:1 ratio. An additional four rats were infected with 2×10^7 mutant cells alone. Fourteen days postinfection, the lungs were removed and homogenized, and the numbers of viable wild-type and mutant bacteria in the lungs were determined on Trypticase soy agar and Trypticase soy agar containing 100 μg/ml trimethoprim.

RESULTS AND DISCUSSION

Identification of hld genes in B. cenocepacia. Analysis of the genomic sequence of B. cenocepacia strain J2315 resulted in the discovery of two genes homologous to hldA and hldD, which putatively encode a heptokinase and an epimerase, respectively. Downstream of hldA and hldD is a gene that encodes a product with homology to cysteine synthase B, while directly upstream of hldA we identified two other genes that encode polypeptides with homology to the UDP-glucose dehydrogenase and a putative conserved membrane protein (Fig. 2). These genes were annotated as BCAL2943 to BCAL2947 by the Wellcome Trust Sanger Institute (http://www.sanger.ac.uk /Projects/B_cenocepacia/) and are located in chromosome 1; they are close to one another and are transcribed in the same direction, suggesting that they form a five-gene operon. In our studies, we used B. cenocepacia strain K56-2, which is clonally related to J2315 (33) but is much easier to manipulate genetically. PCR amplifications confirmed that this region was identical in these two strains. We also confirmed by reverse transcription-PCR that hldA and hldD are cotranscribed (data not shown), which supports the hypothesis that they are part of an operon.

HldA is a heptokinase, and HldD is an epimerase. To confirm that hldA encodes a heptokinase, we cloned the gene into the rhamnose-inducible expression vector pSCrhaB2 (Table 1) and tested the ability of the recombinant plasmid to complement E. coli ΔhldE1 mutant FAM3 (36). In E. coli, the heptokinase activity is in the amino-terminal domain (known as the HldE1 domain) of the bifunctional HldE protein (36). The FAM3 mutant strain has a partial deletion of the hldE gene that eliminates the heptokinase activity, while the rest of the ADP-heptose pathway remains functional (36). As shown in Fig. 3A, FAM3 produced shorter, faster-migrating lipid A-core oligosaccharide bands, reflecting the loss of heptose sugars in the LPS core moiety. In contrast, FAM3(pSL3) produced lipid A-core oligosaccharide bands whose migration was identical to that observed for parental strain S0874. Restoration of the parental lipid A-core oligosaccharide phenotype was complete in the presence of the inducer rhamnose and partial in the absence of the inducer. No changes were observed in the LPS profile of the FAM3 mutant transformed with the vector control. These results demonstrate that the B. cenocepacia hldA gene encodes a protein with heptokinase activity. A similar experiment was performed using E. coli ΔhldD strain SAL7, and the results confirmed that the B. cenocepacia hldD gene encodes an epimerase (Fig. 3B).

B. cenocepacia hldA mutant produces a truncated LPS. A mutagenesis strategy was used to create B. cenocepacia polar mutants by integration of a plasmid containing transcriptional and translational stops through a single recombination event (Flannagan and Valvano, unpublished). Both hldA and the cysteine synthase B genes were successfully targeted by this method, resulting in mutants SAL1 and SAL2, respectively (Fig. 2). Since we did not expect the protein encoded by the cysteine synthase B gene to play a role in ADP-β-glycero-β-manno-heptose synthesis or antimicrobial peptide resistance, SAL2 was used as an internal control in all experiments.

LPS from the SAL1 and SAL2 mutants was purified and compared to that of parental strain K56-2 (Fig. 4A). SAL2 and K56-2 produced LPS with identical profiles, confirming that the protein encoded by the cysteine synthase B gene is not involved in the synthesis of LPS, as expected. The ladder-like banding pattern corresponded to the presence of polymeric O antigen, as we have previously shown for strain K56-2 (42). In contrast, SAL1 produced a faster-migrating lipid A-core oligosaccharide band and no polymeric O antigen, which is consistent with a loss of heptoses in the inner core. This defect could be rescued when a complementing plasmid containing both hldD and hldA was transformed into SAL1 (Fig. 4B). Plasmids containing either of the two genes alone could not rescue the
LPS defective phenotype (Fig. 4B). However, in the presence of a functional hldA alone, SAL1 produced a small amount of full-length core, and when the gel was overstained, a very small amount of O antigen could be visualized (data not shown). Heptosyltransferases have also been shown to transfer d-glycero-d-manno-heptose, albeit at much lower rates than l-glycero-d-manno-heptose (58). This could account for the low level of complementation with HldA alone. SAL1 was also more sensitive to HNP-1. Since we could not obtain sufficient amounts of HldA, without HldA. We also assayed SAL1 and K56-2 for susceptibility to the complete LPS core or O antigen or both, an additional mutant of HNP-1 tested. Complementation studies showed that both hldD and hldA are required for growth in the presence of polymyxin B, but that complementation with either gene individually does not confer resistance (Fig. 6A). The growth of the complemented strains was somewhat slower than the growth of K56-2, possibly due to the energetic constraints of maintaining plasmids and the overexpression of plasmid-encoded HldA and HldD proteins.

The sensitivity of the heptoseless mutant to polymyxin B was believed to be bacteriostatic. To confirm this, we modified the assay to include a time course analysis. Figure 6B shows that although there was a gradual decrease in viable SAL1 bacteria over 4.5 h, the number of bacteria remaining after 4.5 h was similar to the number in the initial inoculum. We concluded from these results that the SAL1 mutant is sensitive to polymyxin B and that the effect of polymyxin B is primarily bacteriostatic.

Loss of polymeric O antigen does not result in sensitivity to polymyxin B. In other organisms, such as *B. bronchiseptica*, the O antigen is important for resistance to antimicrobial peptides (1). To determine whether sensitivity to polymyxin B in the *B. cenocepacia* SAL1 mutant was due to the absence of either the complete LPS core or O antigen or both, an additional mutant that was unable to produce polymeric O antigen was constructed. In this mutant, the *B. cenocepacia* K56-2 *wbxE* gene was inactivated, resulting in strain RSF19. The *wbxE* gene encodes a glycosyltransferase necessary for assembly of the O-antigen subunits (42). In the clonally related strain *B. cenocepacia* J2315, an insertion element interrupts this gene and is

TABLE 2. Antimicrobial peptide MIC₅₀s for K56-2 and SAL1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Polymyxin B (µg/ml)</th>
<th>Melittin (µg/ml)</th>
<th>Growth inhibition by HNP-1 (µg/ml)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>K56-2</td>
<td>>512</td>
<td>>512</td>
<td>>100</td>
</tr>
<tr>
<td>SAL1</td>
<td>32</td>
<td>8</td>
<td>25</td>
</tr>
</tbody>
</table>

^a Observed as haloes of growth inhibition on plates where the peptide was directly spotted onto the plates (Fig. 5).
responsible for the lack of O-antigen expression (42). RSF19 produced LPS with a complete lipid A-core oligosaccharide and another band due to a partial O-antigen subunit linked to the lipid A-core oligosaccharide (42) (Fig. 7A). RSF19 was resistant to polymyxin B (Fig. 7B) and melittin (data not shown). Therefore, we concluded that the loss of lipid A-core oligosaccharide heptoses and not the loss of polymeric O antigen was responsible for sensitivity to the peptides tested. This conclusion is also supported by the observation that *B. cenocepacia* strain J2315, which lacks O antigen, is also highly resistant to antimicrobial peptides (Loutet and Valvano, unpublished results). To date, we have been unable to construct a mutant strain devoid of O antigen because genes that are typically targeted to create O-antigen mutants, such as *wecA* or *waaL*, are found in operons with genes involved in synthesis of other LPS components or are duplicated. Additional mutant strains must be constructed in order to test the importance of LPS outer core sugars for antimicrobial peptide resistance. In other organisms, such as *Y. enterocolitica* and *Actinobacillus pleuropneumoniae*, the outer core residues contribute to antimicrobial peptide resistance (45, 50).

FIG. 6. Heptoseless *B. cenocepacia* is sensitive to polymyxin B. (A) Number of CFU prior to challenge (Starting CFU) and 2 h after incubation in the absence (Buffer) or presence (Polymyxin B) of 100 μg/ml polymyxin B. (B) Time course analysis of growth in the absence (solid symbols) or presence (open symbols) of 100 μg/ml polymyxin B for 4.5 h. The data points and error bars indicate means and standard deviations of data from one representative experiment done in triplicate. Significant differences were determined using unpaired *t* tests. One asterisk indicates that the *P* value is <0.05 for the statistical difference between the polymyxin B and buffer treatments, and two asterisks indicate that the *P* value is <0.001.

Concluding remarks. Our results demonstrate that the complete lipid A-core oligosaccharide of *B. cenocepacia* is required for resistance to the antimicrobial peptides polymyxin B, melittin, and HNP-1 in vitro and for bacterial survival in vivo. The effects that we observed here may be indirect. Conceivably, in this study other components of LPS that play a role in antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted. The ability to phosphorylate heptose residues of the inner core has been shown to contribute to antimicrobial peptide resistance and in vivo survival were disrupted.
into the LPS could enhance the ability of the immune system to clear a B. cenocepacia infection.

Although the heptoseless mutant SAL1 is more susceptible to the effects of polymyxin B than the parental strain, it is not as sensitive to polymyxin B as other bacteria. SAL1 cells can still survive in the presence of 100 μg/ml of polymyxin B. By comparison, E. coli O157 incubated in the presence of 12.5 μg/ml polymyxin B is killed within 30 min (41), and an S. enterica serovar Typhimurium strain constitutively expressing Ara4N substitutions of lipid A was found to have a polymyxin B MIC of 6.3 μg/ml (20). Presumably, the presence of the Ara4N substitutions of lipid A contributes to protection of these bacteria from polymyxin B killing. However, given that resistance is still high (MIC50 of polymyxin B, 32 μg/ml), it is likely that the resistance of B. cenocepacia to polymyxin B and other antimicrobial peptides is multifactorial. We are currently investigating whether the stability of one or more outer membrane proteins is compromised in our heptoseless LPS mutant and whether these proteins are associated with resistance to antimicrobial peptides.

In a recent study, Gronow et al. (19) constructed a deep-rough mutant of B. cepacia strain ATCC 25416 (genomovar I) with a truncated core and concluded that this structural change did not affect the virulence of the bacterium. Our results do not support this conclusion, but they are in agreement with a report by Burtnick and Woods (7), which showed that in the non-Bcc organism Burkholderia pseudomallei, the LPS core oligosaccharide is also necessary for resistance to polymyxin B. Further investigations are under way in our laboratory to fully characterize the genetic determinants of antimicrobial peptide resistance in B. cenocepacia.

ACKNOWLEDGMENTS

We thank F. McArthur for providing strain FAM3 and J. Parkhill for providing the mutation of B. cenocepacia J2315.

This work was funded by grants from the Canadian Bacterial Diseases Network and the Canadian Institutes of Health Research (to M.A.V.) and by the Special Program Grant Initiative “In Memory of Michael O’Reilly” funded by the Canadian Cystic Fibrosis Foundation and the Cardiovascular and Respiratory Health Institute of the Canadian Institutes of Health Research (to M.A.V. and P.A.S.). S.A.L. and R.S.F. were supported by scholarships from the Natural Sciences and Engineering Research Council of Canada and the Canadian Cystic Fibrosis Foundation, respectively. M.A.V. holds a Canada Research Chair in Infectious Disease and Microbial Pathogenesis.

REFERENCES

33. Mahenthiralingam, E., T. Coenye, J. W. Chung, D. P. Speert, J. R. W. Govan,
P. Taylor, and P. Vandamme. 2000. Diagnostically and experimentally useful
34. Mahenthiralingam, E., T. A. Urban, and J. B. Goldberg. 2005. The multifarious,
35. Marolda, C. L., M. F. Feldman, and M. A. Valvano. 1999. Genetic organi-
zation of the O7-specific lipopolysaccharide biosynthesis cluster of Esche-
domain from the bifunctional HldE protein, which is involved in ADP-L-
in construction of insertion mutations: osmoregulation of outer membrane
proteins and virulence determinants in Vibrio cholerae requires toxR. J.
38. Molinaro, A., C. De Castro, R. Lanzetta, A. Evidente, M. Parrilli, and O.
Holst. 2002. Lipopolysaccharides possessing two L-glycerol-manno-hepto-
pyranosyl-(1→5)-3-deoxy-L-manno-2-ulopyranosonic acid moieties in the
core region. The structure of the core region of the lipopolysaccharides from
P2 eductants of Escherichia coli K-12 due to deletion of the idc gene. J.
status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia
1997. In vitro susceptibility of Escherichia coli O157 to several antimicrobial
42. Ortega, X., T. A. Hunt, S. Loutet, A. D. Vinion-Dubiel, A. Datta, B.
Choudhury, J. B. Goldberg, R. Carlson, and M. A. Valvano. 2005. Reconsti-
tution of O-specific lipopolysaccharide expression in Burkholderia cenoce-
pacia strain J2315, which is associated with transmissible infections in pa-
2002. Sublethal concentrations of pleuropin-derived antimicrobial peptides
hinder macromolecular expression in Escherichia coli. Antimicrob. Agents
Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to
defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274:
34895–34901.
45. Ramjiet, M., V. Deslandes, F. St. Michael, A. D. Cox, M. Kobisch, M.
outer core affects susceptibility to antimicrobial peptides and virulence of
cepacia complex species among isolates recovered from persons with or
47. Schutte, B. C., and P. B. McCray, Jr. 2002. β-Defensins in lung host defense.
Annu. Rev. Physiol. 64:769–784.
Nesseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due
to a member of the resistance/modulation/division efflux pump family. Proc.
49. Siilipo, A., A. Molinaro, P. Cescutti, E. Bedini, R. Rizzo, M. Parrilli, and R.
Lanzetta. 2005. Complete structural characterization of the lipid A fraction
of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiol-
ogy 15:561–570.
50. Skurnik, M., R. Venho, J. A. Bengoechea, and I. Moriyon. 1999. The li-
popolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required
typhimurium: chemical analysis and freeze-fracture studies with lipopolysac-
52. Tran, A. X., M. E. Lester, C. M. Stead, C. R. H. Raetz, D. J. Maskell, S. C.
McGrath, R. J. Cotter, and M. S. Trent. 1999. Resistance to the antimic-
obrial peptide polymyxin requires myristoylation of Escherichia coli and
sin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stim-
ulated mononuclear phagocytes via proinflammatory cytokine production.
54. Valvano, M. A., C. L. Marolda, M. Bittner, M. Glaskin-Clay, T. L. Simon,
and J. D. Klena. 2000. The rfaE gene from Escherichia coli encodes a
bifunctional protein involved in biosynthesis of the lipopolysaccharide core
synthesis of nucleotide-activated glycerol-manno-heptose precursors of bac-
terial glycoproteins and cell surface polysaccharides. Microbiology 148:1979–
1989.
56. Walsh, A. G., M. J. Matewish, L. L. Burrows, M. A. Monteiro, M. B. Perry,
and J. S. Lam. 2000. Lipopolysaccharide core phosphates are required for
viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol. Mi-
crobiol. 35:718–727.
57. Yethon, J., J. S. Gunn, R. K. Ernst, S. I. Miller, L. Laroche, D. Malo, and
C. Whitfield. 2000. Salmonella enterica serovar Typhimurium waaP mutants
show increased susceptibility to polymyxin and loss of virulence in vivo.
58. Zamyatina, A., S. Gronow, C. Oertelt, M. Puchberger, H. Brade, and P.
Kosma. 2000. Efficient chemical synthesis of the two anomers of ADP-L-
glycerol- and 3′-glycerol-2′-manno-heptopyranose allows the determination of
the substrate specificities of bacterial heptosyltransferases. Angew. Chem.
Int. 39:4150–4153.