Functional Comparison of the Two Bacillus anthracis Glutamate Racemases

Dylan Dodd,¹ Joseph G. Reese,² Craig R. Louer,¹ Jimmy D. Ballard,³ M. Ashley Spies,⁴,* and Steven R. Blanke¹,*

Department of Microbiology and Institute for Genomic Biology¹ and Department of Biochemistry,² University of Illinois, Urbana, Illinois, and Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma³

Received 8 March 2007/Accepted 1 May 2007

Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because D-glutamate stereoisomerization to L-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of L-glutamate and D-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of L-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.

Inhalational anthrax is a complex human disease that begins with deposition of Bacillus anthracis spores into lungs, followed by infiltration and proliferation of vegetative bacteria in the blood and several organs, ultimately leading to death of the host (23, 25, 36, 42). Current antibiotic treatments are effective during early stages of infection; however, the emergence of engineered (53) and naturally occurring (4) antibiotic-resistant strains underscores the need to identify new antibacterial targets (7). Moreover, due to the potential deployment of B. anthracis as a bioweapon, the development and stockpiling of new anthrax countermeasures have been prioritized by the United States government (6).

Inhibition of cell wall synthesis remains an effective approach for preventing bacterial growth (53, 54). For most eu- bacteria, an important constituent of the peptidoglycan cell wall is D-glutamate (38, 39, 41, 44, 45). L-Glutamate is not typically available in the environment but instead is generated by the enzyme glutamate racemase (E.C. 5.1.1.3), which catalyzes the reversible stereoisomerization of L-glutamate (5, 14, 31). Insights into the cofactor-independent amino acid racemases have begun to emerge from biochemical studies of enzymes isolated from several organisms, including Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Escherichia coli, Lactobacillus fermentum, Lactobacillus brevis, Aquifex pyrophilus, Staphylococcus haemolyticus, Brevibacterium lactofermentum, and Mycobacterium tuberculosis (1, 2, 5, 10, 14, 18, 19, 21, 28, 29, 33, 35, 40, 47, 58, 61), as well as the recently described crystal structure of RacE–D-glutamate from B. subtilis (43). Several studies have identified glutamate racemase as an essential gene in B. subtilis and E. coli, which has led to the prediction that glutamate racemase activity is important for peptidoglycan biosynthesis in these organisms (14, 31). Because glutamate racemases are not found in mammals, these enzymes have emerged as excellent targets for the design of a new class of antibacterial agents (3, 12, 22, 28, 43, 59).

Analogous to the peptidoglycan of other eubacteria, D-glutamate is predicted to be an important constituent of B. anthracis (48). However, in B. anthracis D-glutamate is also the sole component of the poly-D-glutamic acid (PDGA) capsule (24), an important virulence factor that is required for dissemination in a murine model of inhalational anthrax (16) and is presumed to be required for disease in humans as well (16, 36, 46). Therefore, in addition to its proposed role in cell wall biosynthesis, glutamate racemase is also predicted to be the major source of D-glutamate for PDGA capsule synthesis in B. anthracis (9). In contrast to most bacteria that possess only one glutamate racemase gene (5, 10, 14, 18, 19, 26, 29, 33, 35, 40, 61), the B. anthracis genome contains two genes (BAS0806 and BAS4379) predicted to encode glutamate racemases, which are designated racE1 and racE2. Recently, inactivation of racE2 was reported to cause a severe growth defect in B. anthracis,
while inactivation of racE1 only moderately inhibited growth (52). However, the underlying reasons for these growth phenotypes, especially for the racE2 mutant, were not identified and thus cannot be attributed at this time to defects in peptidoglycan synthesis resulting from insufficient t-glutamate availability (52). Further complicating the interpretation of the phenotypes reported for the racE1 and racE2 mutants is uncertainty concerning whether either of these two genes encodes functional enzymes with glutamate racemase activity. Thus, validation of RacE1 or RacE2 as a potential drug target awaits elucidation of the enzymatic and biochemical properties of these proteins.

Here, we characterized and compared recombinant wild-type and mutant forms of RacE1 and RacE2 from B. anthracis. The racE1 and racE2 genes were cloned from B. anthracis Sterne 7702 and expressed as recombinant proteins in E. coli. These studies revealed that in cell-free assays, B. anthracis RacE1 and RacE2 both catalyze stereoisomerization of L-glutamate to D-glutamate. However, the two enzymes differ in ways that could influence future inhibitor development.

MATERIALS AND METHODS

Materials. B. anthracis Sterne 7702 (56) was obtained from Theresa M. Kochler (Houston, TX). E. coli XL1-Blue was obtained from Stratagene (La Jolla, CA). E. coli T7 lysozyme BL21(DE3) was obtained from Novagen (Madison, WI). A DNAeasy tissue kit, a DNA PCR purification kit, and a DNA gel extraction kit were acquired from Qiagen (Valencia, CA). DNA oligonucleotides were synthesized at Integrated DNA Technologies (Corvalis, IA).

DNA oligonucleotides were engineered such that 5′-Xhol (racE1) or SalI (racE2) and 3′ BamHI (racE1 and racE2) restriction sites were incorporated. Primers were synthesized by Integrated DNA Technologies.

Coding sequences and molecular weights were predicted based upon additional residues contributed by the pET-15b vector N-terminal histidine tag (Novagen).

TABLE 1. Cloning of B. anthracis glutamate racemase genes, using B. anthracis Sterne 7702(pXO1\(^+\)/pXO2\(^-\))

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession no.</th>
<th>Primer</th>
<th>Direction</th>
<th>Sequence (5′→3′)</th>
<th>Predicted mol wt</th>
<th>First residue of coding sequence</th>
<th>Last residue of coding sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>racE1</td>
<td>BAS0806</td>
<td>Forward</td>
<td>5′-GCTGCTCGAGTTGTACGTATCATATAAAC-3′</td>
<td>32,532</td>
<td>Met-1</td>
<td>Ast-298</td>
<td></td>
</tr>
<tr>
<td>racE2</td>
<td>BAS4379</td>
<td>Forward</td>
<td>5′-GCTGATTTCTGACACGGTGAATACCGTTG-3′</td>
<td>32,316</td>
<td>Met-1</td>
<td>Glu-291</td>
<td></td>
</tr>
</tbody>
</table>

- DNA sequences for racE1 and racE2 were obtained from The Institute for Genomic Research Comprehensive Microbial Resource (http://cmr.tigr.org/tigr-scripts/CMR/CmrHomePage.cgi).
- Oligonucleotide primers were engineered such that 5′ Xhol (racE1) or SalI (racE2) and 3′ BamHI (racE1 and racE2) restriction sites were incorporated. Primers were synthesized by Integrated DNA Technologies (Corvalis, IA).
- Coding sequences and molecular weights were predicted based upon additional residues contributed by the pET-15b vector N-terminal histidine tag (Novagen).
CD spectroscopy of purified RacE1 and RacE2. Circular dichroism (CD) spectra were collected for RacE1 and RacE2 in the far-UV range utilizing a J-720 CD spectropolarimeter from JASCO (Easton, MD). A cylindrical cuvette with a total volume of 350 μl and a path length of 0.1 cm was used for each assay. The CD spectra of RacE1 (2.7 μM) and RacE2 (2.4 μM) in optically clear borate buffer (50 mM potassium borate, pH 8.0) were recorded from 190 to 260 nm at a scan rate of 50 nm/s with a 1-nm wavelength step and with five accumulations. Data acquisition was coordinated using the JASCO Spectra Manager v1.54A software. Raw data files were uploaded onto the DICHROWEB online server (http://www.cryst.bbk.ac.uk/cdweb/html/home.html) and analyzed using the CDSSTR algorithm with reference set 4, which is optimized for the analysis of DNA Technologies (Coralville, IA).

Size exclusion chromatography. Size exclusion chromatography was conducted using an AKTA Purifier 900 fast protein liquid chromatography (FPLC) system equipped with a Superdex 200 10/30 GL size exclusion column and a UV detector, all obtained from Amersham Pharmacia Biotech (Little Chalfont, United Kingdom). RacE1 (5 mg/ml; 100 μl), RacE2 (5 mg/ml; 100 μl), or a gel filtration standard mixture was injected onto the column preequilibrated with a potassium borate buffer (50 mM boric acid, 100 mM KCl, 0.2 mM DTT; pH 8.0) liquid phase at a flow rate of 0.5 ml/min. Standard curves were generated by plotting the log of the molecular weights (provided by the supplier) of the gel filtration standards versus retention time. Experimental retention times were used to calculate the apparent molecular weights of RacE1 and RacE2 from the standard curve.

Racemization assays. Enzyme-catalyzed stereoisomerization of D- or L-glutamate was assayed using a J-720 CD spectropolarimeter from JASCO (Easton, MD). A thermostat-equipped cylindrical cuvette with a capacity of 700 μl and a path length of 1 cm was used for each assay. D- or L-glutamate (5 mM) in optically clear potassium borate buffer (50 mM boric acid, 100 mM KCl, 0.2 mM DTT; pH 8.0) was incubated at 25°C in the absence or presence of RacE1 or RacE2 at a concentration of 0.08, 0.33, or 1.3 μM. D- or L-glutamate stereoisomerization was monitored by recording the CD signal at 217 nm. Data acquisition was performed using the JASCO Spectra Manager v1.54A software, and a nonlinear curve fit was applied using GraphPad Prism V4.03 from GraphPad Software (San Diego, CA).

Determination of steady-state kinetic parameters. Racemase assays were carried out as described above, with the exception that the D-glutamate concentration was varied from 0.2 to 10 mM while the concentration of L-glutamate was varied from 5 to 200 mM. In addition, a 700-μl cuvette with a 1-cm path length was used for reactions with substrate concentrations less than 5 mM, and a 350-μl cuvette with a 0.1-cm path length was used for reactions with higher substrate concentrations. Reactions were initiated by addition of RacE1 (0.78 μM) or RacE2 (0.78 μM), and the levels of D- or L-glutamate were measured by recording the CD signal at 215 nm for D- or L-glutamate concentrations from 0.2 to 10 mM and at 225 nm for L-glutamate concentrations from 30 to 200 mM at 25°C. Data acquisition was performed using the JASCO Spectra Manager v1.54A software, and a nonlinear curve fit was applied using GraphPad Prism V4.03 from GraphPad Software (San Diego, CA).

pH rate profile. The stereoisomerization of glutamate in the L→D direction by RacE1 and RacE2 in buffers having various pH values was assayed using a J-720 CD spectropolarimeter from JASCO (Easton, MD). A cylindrical cuvette with a total volume of 350 μl and a path length of 0.1 cm was used for each assay. Seven different buffers spanning a pH range from 6.5 to 9.5 with increments of 0.5 pH unit were prepared. To maintain a well-buffered system, the following phosphate and borate buffer formulations were utilized: for pH 6.5, 7.0, and 7.5, 50 mM potassium phosphate, 100 mM KCl, 200 mM L-glutamate, 0.2 mM DTT; and for pH 8.0, 8.5, 9.0, and 9.5, 50 mM boric acid, 100 mM KCl, 200 mM L-glutamate, 0.2 mM DTT. Each buffer was prepared with 200 mM L-glutamate, which yielded fully saturating conditions for RacE1 and nearly saturating conditions (83% saturation) for RacE2, so that the initial rate data would report true kcat values. Reactions were initiated by addition of RacE1 (0.78 μM) or RacE2 (0.78 μM), and the levels of L-glutamate were monitored by recording the CD signal at 225 nm at 25°C. Data acquisition was performed using the JASCO Spectra Manager v1.54A software, and a user-defined curve fit was applied using GraphPad Prism V4.03 from GraphPad Software (San Diego, CA).

Homology models. The homology models for RacE1 and RacE2 were constructed using The Chemical Computing Group’s Molecular Operating Environment (MOE) 2006.08. The template for both models was the B. subtilis RacE–D-glutamate structure (Protein Data Bank accession no. 1ZUW), which was aligned with the sequences for RacE1 and RacE2 using the Blosum62 substitution matrix. Ten intermediate homology models resulting from permutational selection of different loop candidates and side chain rotamers were built for RacE1 and RacE2. The intermediate model which scored best according to a packing evaluation function was chosen as the final model. Each of the intermediate models was subjected to a degree of energy minimization using the force field MMFF94x, with a distance-dependent dielectric (i.e., it simulated the polar environment of water).

Docking of compound 69 to RacE1 and RacE2. A conformational database was generated for (2R,4R)-2-amino-4-(2-benzo[b]thienyl)methyl pentanecidoic acid (compound 69) (12) using a stochastic conformational search, as implemented in MOE 2006.08 (Chemical Computing Group, Inc.). This program employs a variation of the method of Ferguson and Raber (17), in which bonds are randomly rotated, rather than using perturbation of Cartesian coordinates. The force field was MMFF94x. Minimization was performed for each conformation up to a root mean square gradient of 0.001. Any two conformers were considered identical if their optimal heavy atom root mean square superposition distance was less than a tolerance value of 0.1 Å. All conformations with an energy greater than 7 kcal/mol were excluded from the database. This yielded a conformational database of 17 unique conformations of compound 69, which were used in the docking procedure. The docking of compound 69 into RacE1 and RacE2 was performed with the Dock function in MOE 2006.08, using the Alpha Triangle placement method, and the London dG Scoring method for free energy estimation.

Site-directed mutagenesis. Mutagenesis was performed using the QuikChange mutagenesis kit from Stratagene (La Jolla, CA). First, complementary mutagenic primers (Table 2) were engineered with the desired mutation in the center of the primer and 10 to 15 bases of correct sequence on either side. Reaction mixtures were prepared as described in the QuikChange protocol with pET-15b-racE1 or pET-15b-racE2 as the plasmid template for generation of the RacE1 and RacE2 mutants. After cycling of the reaction mixture 18 times in a thermal cycler, the resulting mixture was digested with DpnI, and the resulting DNA was transformed into supercompetent E. coli XL1-Blue cells. The resulting mutant plas-

Table 2. Primer sequences used for mutagenesis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Desired mutation</th>
<th>Primer</th>
<th>Primer sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>racE1</td>
<td></td>
<td>racE1C77AFor</td>
<td>5’-GGCTCTATGTTGACGCAGCATGCAGCTGC-3’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>racE1C77ARev</td>
<td>5’-GCAGCGTCGACGATTCGTCATCCATAGGCC-3’</td>
</tr>
<tr>
<td>racE2</td>
<td></td>
<td>racE2C185AFor</td>
<td>5’-GGACCTAATTTCATGGCGACCACTATCGATGTATGATAG-3’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>racE2C185ARev</td>
<td>5’-GGACCTAAATTCTGGAATGTTCGCACTACATTTG-3’</td>
</tr>
</tbody>
</table>

*Residues were selected for conservative mutagenesis due to their close proximity to D-glutamate in the homology models generated from the B. subtilis RacE crystal structure (43).

*Primers were designed in accordance with the QuikChange site-directed mutagenesis protocol by Stratagene (La Jolla, CA) and were synthesized by Integrated DNA Technologies (Coralville, IA).

*Underlined sequences indicate engineered codon mutations.
mids were isolated, and the entire gene was sequenced to ensure that the appropriate mutations were introduced, while the rest of the gene sequences remained unchanged.

Protease sensitivity assays. Wild-type RacE1 (0.13 mM), RacE1 C77A (0.13 mM), and RacE1 C188A (0.13 mM) were incubated in a Tris buffer (50 mM Tris-HCl, 100 mM NaCl, 2 mM DTT; pH 8.0) with various concentrations of chymotrypsin (0, 53, 213, and 640 μg/ml) at 4°C. Wild-type RacE2 (0.13 mM), RacE2 C74A (0.13 mM), and RacE2 C185A (0.13 mM) were incubated in a Tris buffer (50 mM Tris-HCl, 100 mM NaCl, 2 mM DTT; pH 8.0) with various concentrations of chymotrypsin (0, 10, 40, and 160 μg/ml) at 4°C. After 1 h, the reactions were stopped by addition of an equal volume of 2% sodium dodecyl sulfate (SDS) sample buffer (4% SDS, 100 mM Tris, 0.4 mg bromophenol blue/ml, 0.2 M DTT, 20% glycerol). The samples were boiled for 3 min and resolved by SDS-polyacrylamide gel electrophoresis (PAGE) (16% acrylamide; 70 V for 25 min and then 200 V for an additional 100 min). The gels were soaked in fixing solution (25% isopropanol, 10% acetic acid) for 15 min and then placed in Coomassie blue stain (10% acetic acid, 0.06 mg/ml Coomassie brilliant blue G-250). After 10 h, the gels were rinsed twice with H2O, preserved by soaking in water with 3% glycerol for 10 h, and dried between gel drying films.

RESULTS

Identification and cloning of B. anthracis racE1 and racE2. The racE1 (BAS0806) and racE2 (BAS4379) genes predicted to encode glutamate racemases in B. anthracis were identified by sequence homology to racE (BSU2835) in B. subtilis. racE1 and racE2 were PCR amplified from chromosomal DNA purified from B. anthracis Sterne 7702 (Table 1) and cloned into an expression vector for recombinant expression in E. coli, each with an amino-terminal hexahistidine fusion peptide to facilitate purification via nickel-chelate affinity chromatography. In this single chromatography step, both RacE1 and RacE2 were purified to greater than 98% purity, as estimated by SDS-PAGE analysis (Fig. 2A). Preliminary experiments to compare properties of the recombinant proteins before and after the amino-terminal polyhistidine fusion peptide was removed by thrombin cleavage indicated that the presence of the amino-terminal polyhistidine fusion peptide had no detectable effects on the kinetic properties of either RacE1 or RacE2 (data not shown).

Expression and purification of B. anthracis RacE1 and RacE2. Both RacE1 and RacE2 were expressed as soluble, recombinant proteins in E. coli, each with an amino-terminal hexahistidine fusion peptide to facilitate purification via nickel-chelate affinity chromatography. In this single chromatography step, both RacE1 and RacE2 were purified to greater than 98% purity, as estimated by SDS-PAGE analysis (Fig. 2A). Preliminary experiments to compare properties of the recombinant proteins before and after the amino-terminal polyhistidine fusion peptide was removed by thrombin cleavage indicated that the presence of the amino-terminal polyhistidine fusion peptide had no detectable effects on the kinetic properties of either RacE1 or RacE2 (data not shown).

RacE1 and RacE2 have similar secondary structures. To compare the secondary structural compositions of recombinant RacE1 and RacE2, CD spectra in the far-UV region (190 to 260 nm) were collected for RacE1 and RacE2. These experiments revealed that recombinant RacE1 and RacE2 both yielded CD spectra indicating the presence of α-helix, β-sheet, and β-turn secondary structural elements. Moreover, comparison of the CD spectra revealed that the relative percentages of α-helix, β-sheet, and β-turn secondary structural elements were nearly identical for RacE1 and RacE2 (Fig. 2B and Table 3). These data suggest that when expressed as recombinant proteins, RacE1 and RacE2 had similar overall secondary structural properties.
RacE1 and RacE2 differ in their solution quaternary structures. To compare the quaternary structures of RacE1 and RacE2 and to rule out the possibility that the purified proteins exist as aggregates, the apparent molecular weights of purified RacE1 and RacE2 were determined by size exclusion FPLC. These experiments revealed that both RacE1 and RacE2 eluted well after the exclusion volume of the column, indicating that neither of these proteins exists as large aggregates in solution. However, RacE2 had a shorter retention time than RacE1, suggesting that in solution RacE2 exists in a higher-molecular-weight form than RacE1 (Fig. 2C). The molecular weights of RacE1 and RacE2 were calculated from the retention times of the peak absorbance by comparison with calibration standards having known molecular weights. The apparent molecular weight of RacE1 was calculated to be 32.3 ± 4.6 kDa, which is the predicted molecular weight of monomeric RacE1 (32.3 ± 103). In contrast, the apparent molecular weight of RacE2 was calculated to be 51.5 ± 5.2 kDa, which is lower than the value expected for the dimeric protein (64.6 ± 103), suggesting that in solution RacE2 may be polydisperse, existing as both monomers and higher-order complexes. These results suggest that although RacE1 and RacE2 share significant sequence similarity, these proteins have different quaternary structural properties.

Purified RacE1 and RacE2 are both functional in cell-free assays.

To evaluate whether racE1 and racE2 encode functional glutamate racemase enzymes, RacE1 and RacE2 were assessed to determine their capacities to convert L-glutamate to the corresponding D enantiomer by using CD to directly observe the loss of L-glutamate as it was converted to D-glutamate. L-Glutamate (5 mM) was incubated in the absence or presence of RacE1 or RacE2 (1.3, 0.33, or 0.08 M), and the CD signal was recorded for 2.25 h. For panels A to E, at least three separate experiments were performed. For each independent experiment, we used RacE1 or RacE2 from one of three independent enzyme preparations, as well as assay reagents from one of three independent preparations. For panels A to E, representative data from a single experiment are shown. In panel C, the molecular weights are reported as the means ± standard deviations from three independent experiments. mAU, milliabsorbance units.
mate. These experiments revealed that in the absence of RacE1 or RacE2, stereoisomerization of l-glutamate was not detectable (Fig. 2D). In contrast, consumption of l-glutamate was readily observed in the presence of either RacE1 or RacE2. Moreover, the rate of l-glutamate consumption increased as a function of RacE1 or RacE2 concentration. These data indicated that under cell-free and highly defined conditions, RacE1 and RacE2 both catalyzed the conversion of l-glutamate to d-glutamate in a concentration-dependent fashion. These results also established, for the first time, that despite reported differences in phenotypes of the null mutants (52), racE1 and racE2 both encode functional enzymes that have glutamate racemase activity.

RacE1 and RacE2 both catalyze the reverse reaction: conversion of d-glutamate to l-glutamate. In addition to catalyzing the conversion of l-glutamate to the corresponding d enantiomer, glutamate racemases also catalyze the reverse reaction, conversion of d-glutamate to the corresponding l enantiomer. To evaluate whether RacE1 and RacE2 share this canonical property of the glutamate racemase family, we used CD to directly measure the stereoisomerization of d-glutamate to the corresponding l enantiomer. The experiments revealed a time-dependent increase in the CD signal corresponding to the loss of d-glutamate in the presence of either RacE1 or RacE2 (Fig. 2E). Under the conditions of the reaction, the initial rate of stereoisomerization of d-glutamate was higher for RacE2 than for RacE1. In comparison, the rates of stereoisomerization of d-glutamate were similar for RacE2 and RacE1. Finally, these experiments revealed that for both RacE1 and RacE2, the rate of d-glutamate conversion is lower than the rate of l-glutamate conversion. These results indicated that RacE1 and RacE2 share one of the canonical properties of glutamate racemases, which is the capacity to catalyze the stereoisomerization of either glutamate enantiomer.

Steady-state kinetic analysis of RacE1 and RacE2. To compare the catalytic properties of RacE1 and RacE2 in more detail, we analyzed the steady-state kinetic parameters of the two enzymes in the presence of d- or l-glutamate. RacE1 or RacE2 was incubated in a potassium borate buffer in the presence of various concentrations of d-glutamate or l-glutamate, and the change in magnitude of the CD signal was monitored. Initial rate data were obtained for RacE1 and RacE2 for each of the substrate concentrations, and plots of the rate of glutamate racemization (nmol/s) versus substrate concentration (mM) were generated for RacE1 and RacE2 in the presence of l- and d-glutamate (Fig. 3). Steady-state kinetic parameters for RacE1 and RacE2 in the presence of l- or d-glutamate were obtained by applying a nonlinear curve fit to the data (Table 4). In the l→d direction, differences in the individual kinetic parameters for RacE1 and RacE2 were statistically significant (for RacE1, $k_{cat} = 12.0 \pm 0.6$ s$^{-1}$ and for RacE2, $k_{cat} = 18.0 \pm 0.6$ s$^{-1}$ [$P = 0.0003$]; for RacE1, $K_m = 19 \pm 4$ mM and for RacE2, $K_m = 38 \pm 6$ mM [$P = 0.01$]). In the d→l direction, differences in the individual kinetic parameters for RacE1 and RacE2 were not statistically significant (for RacE1, $k_{cat} = 1.8 \pm 0.1$ s$^{-1}$ and for RacE2, $k_{cat} = 2.0 \pm 0.1$ s$^{-1}$ [$P = 0.07$]; for RacE1, $K_m = 1.0 \pm 0.2$ mM and for RacE2, $K_m = 0.77 \pm 0.1$ mM [$P = 0.1$]). These findings are in contrast to those for B. subtilis, in which there are approximately 100-fold differences in the catalytic efficiencies of RacE and YrpC (1, 2). Overall, these data indicated that RacE1 and RacE2 have similar, but not identical, steady-state kinetic properties under cell-free conditions.

pH dependence of RacE1 and RacE2 catalysis. To probe active site features of RacE1 and RacE2 that might contribute to catalysis, we investigated the pH dependence of RacE1- and RacE2-catalyzed glutamate racemase activity. These experiments revealed that the rates of stereoisomerization in the l→d direction catalyzed by RacE1 or RacE2 are both pH dependent, with pH optima of 8.2 and 8.1, respectively. The k_{cat} versus pH data fit a bell-shaped curve (equation 1) representative of an enzyme utilizing two ionizable side chains for catalysis (Fig. 4):

$$k_{catapp} = k_{catmax} \left[1 + 10^{pK_{a1} - pH} + 10^{pK_{a2} - pH}\right]$$

(1)

where k_{catapp} is the measured k_{cat}, k_{catmax} is the true k_{cat}, and pK_{a1} and pK_{a2} are the pK_as of two ionizable groups important for catalysis.
for enzyme activity. The pK_a values for the two ionizable groups were calculated to be 6.3 ± 0.1 and 9.7 ± 0.1 for RacE1 and 6.1 ± 0.1 and 9.7 ± 0.1 for RacE2. These data suggest that the racemization reactions catalyzed by RacE1 and RacE2 are both dependent upon the ionization state of two catalytic residues. Moreover, the pK_a values for the two residues are strikingly similar for the two enzymes, suggesting that RacE1 and RacE2 utilize similar residues for catalysis.

Site-directed mutagenesis reveals active site residues important for catalysis in both RacE1 and RacE2. To further compare active site features of RacE1 and RacE2, we constructed three-dimensional homology models for both B. anthracis RacE1 and RacE2, based upon the available crystal structure for B. subtilis RacE (43). RacE shares 53 and 59% sequence identity with RacE1 and RacE2, respectively. The three-dimensional homology models generated for B. anthracis RacE1 and RacE2 based on the B. subtilis RacE–D-glutamate template exhibited Cα root mean square deviation (RMSD) values of 7.5 Å and 2.6, respectively, indicating that RacE2 may share significant structural similarities with B. subtilis RacE, while RacE1 may possess a more divergent structural arrangement. The homology models for both RacE1 and RacE2 revealed that two cysteine residues (C77 and C188 for RacE1 and C74 and C185 for RacE2) are predicted to be in close proximity to the predicted location of the D-glutamate substrate (Fig. 5A), suggesting that these two cysteine residues may be important for the enzymatic activities of RacE1 or RacE2.

To determine whether the predicted RacE1 and RacE2 active site residues are important for catalysis, RacE1 C77 and C188 and RacE2 C74 and C185 were independently changed to alanine by site-directed mutagenesis. These experiments revealed that for RacE1, an alanine substitution at C77 or C188 attenuated detectable racemase activity by at least 100-fold (Fig. 5B). Likewise, for RacE2, an alanine substitution at C74 or C185 attenuated detectable activity by at least 100-fold. The lower limit of detectable activity was obtained by diluting RacE1 or RacE2 until racemase activity was no longer detectable (data not shown). To ensure that the alanine substitution had not resulted in gross structural changes, we compared protease sensitivity patterns of wild-type and mutant forms of RacE1 and RacE2. These experiments revealed similar chymotrypsin sensitivity patterns for full-length RacE1 and RacE1 C77A or RacE1 C188A, as well as for full-length RacE2 and RacE2 C74A or RacE2 C185A (Fig. 5C), indicating a lack of gross structural differences between wild-type and mutant forms of the full-length proteins. Taken together, these data indicate that C77 and C188 are important for the racemization activities of RacE1 and C74 and C185 are important for the racemization activities of RacE2 and suggest that RacE1 and RacE2 may possess several similar active site features. In addition, these results suggest that the homology models that we generated for RacE1 and RacE2 may be useful for generating future predictions about the structure-function relationships underlying the activities of these enzymes.

DISCUSSION

While most bacteria possess a single glutamate racemase gene, B. anthracis has two genes, *racE1* and *racE2*, each predicted to encode a glutamate racemase. Only several other low-G+C-content gram-positive bacteria, including *B. subtilis*, are predicted or have been shown experimentally to encode two glutamate racemases (30). The presence of two putative
glutamate racemases in *B. anthracis* is potentially of great importance from a chemotherapeutic standpoint because such functional redundancy could mandate that both enzymes be effectively inhibited to successfully prevent the growth of bacilli during infection. On the one hand, if both enzymes possess similar enzymatic properties and active site features, a single compound might be sufficient to inhibit both enzymes. On the other hand, the RacE1 and RacE2 active sites may be sufficiently divergent that a single compound might be ineffective at preventing D-glutamate production by *B. anthracis*.

A recent study reported a significantly more severe growth defect for a *B. anthracis* racE2 deletion mutant than for a racE1 deletion mutant (52), suggesting that there are fundamental differences between these two genes. However, it was not demonstrated that the growth defects were due specifically to reduced stereoisomerization of L-glutamate to D-glutamate by the mutant bacilli. Moreover, at the time of this study, neither racE1 nor racE2 had been demonstrated to encode functional glutamate racemases. The overall objective of the current study was therefore twofold: to establish if either racE1 or racE2 encodes a functional glutamate racemase and, if so, to explore whether there are fundamental differences in the biochemical properties between RacE1 and RacE2, which could provide insights into the growth phenotype differences between the racE1 and racE2 mutant strains (52). Notably, the two glutamate racemase isoenzymes in *B. subtilis* (RacE and YrpC) were demonstrated to have markedly different catalytic properties, with RacE exhibiting 100-fold-higher catalytic efficiency than YrpC (1, 2). In addition, racE is an essential gene, while yrpC is dispensable for growth in rich medium, support-
The idea that in *B. subtilis* only one of two glutamate racemases is necessary for converting L-glutamate to the D-glutamate required for rapid proliferation (31).

Our data indicated that racE1 and racE2 both encode functional glutamate racemases. In addition, we demonstrated that in a highly defined, cell-free system, RacE1 and RacE2 both catalyze the stereoisomerization of glutamate. In contrast to the disparate properties demonstrated for *B. subtilis* RacE and Yrpc (1, 2), steady-state kinetic analysis identified *B. anthracis* as the first organism harboring genes encoding two glutamate racemases that in cell-free assays have similar, although not identical, catalytic properties. Analysis of the pH dependence of L-glutamate racemization suggested that RacE1 and RacE2 each possess two active site residues with titratable side chains having nearly identical pKₐ values. Furthermore, based on homology models that we generated for RacE1 and RacE2, we used directed mutagenesis to demonstrate the importance of two cysteine residues predicted to be in the active sites of both enzymes. Taken together, these results suggested that RacE1 and RacE2 may share similar active site features. However, a more detailed comparison of the predicted active site geometries of the RacE1 and RacE2 homology models (based on the *B. subtilis* RacE–D-glutamate crystal structure) suggested that several conserved active site residues may be positioned differently relative to bound D-glutamate (Fig. 6A). For example, the distances from the nitrogen atom of D-glutamate to the analogous oxygen atoms of two conserved active site side chains varied for RacE1 (3.1 Å for T189 and 3.0 Å for S15) and RacE2 (3.4 Å for T186 and 2.6 Å for S12). Furthermore, the proximities of the α-carbon of D-glutamate to the analogous sulfur atoms of RacE1 C77 (3.1 Å) and RacE2 C74 (3.4 Å) were different.

Differences in nonconserved residues surrounding the RacE1 and RacE2 active sites may also impart altered sensitivity to inhibitors. Compound 69 is a potent inhibitor of *Streptococcus pneumoniae* RacE (50% inhibitory concentration, 0.036 μg/ml), yet its inhibitory properties are highly attenuated for *Staphylococcus aureus* and *Moraxella catarrhalis* RacE (12). It has been suggested that the replacement of an alanine at position 149 with a valine may be responsible for these altered pharmacodynamic properties in *S. pneumoniae* and *S. aureus* (43). Interestingly, *B. anthracis* RacE1 possesses an alanine (Ala-152) and RacE2 possesses a valine (Val-149) at the same positions in the predicted structural models, which suggests that these two enzymes may exhibit altered sensitivity to inhibition by compound 69. To explore this possibility further, we computationally generated a library of conformers of compound 69 and scored the conformer library for high-affinity binding in the active sites of the RacE1 and RacE2 homology models (see Materials and Methods). Compound 69 bound tightly (−6.17 kcal/mol) within the active site of RacE1 and adopted a structure analogous to that of the bound substrate (Fig. 6B). However, entrance of compound 69 into the active site of RacE2 was prevented by the presence of Val-149 (Fig. 6C), and no favorable active site docking conformations could be identified. These results suggest that fitting of a pharmacophore into the catalytic pockets of RacE1 and RacE2 may have different requirements, underscoring the potential importance of considering the active sites of both enzymes during the pharmacophore design process.
The results of these studies suggest that differences in the racE1 and racE2 phenotypes reported earlier are unlikely to be due solely to differences between the intrinsic catalytic efficiencies of the two enzymes (52). However, we cannot rule out the possibility that the catalytic properties of RacE1 and RacE2 may be substantially different within the bacterium. Several other possible levels of regulation of racE1 and racE2 inside the organism may contribute to the observed phenotypic differences in the respective deletion mutants. Transcript levels of virulence factors including the PDGA capsule are regulated by the global transcriptional regulator atxA (8, 11, 32, 60). The increased production of PDGA capsule that occurs in response to CO2 induction may lead to a larger demand for cytoplasmic levels of d-glutamate; thus, it is plausible to speculate that racE1 and racE2 could be differentially regulated at the transcriptional level. In addition, the relative importance or roles of RacE1 and RacE2 may be associated with differential localization of the two proteins. Differential intracellular localization of proteins has been shown to be important and tightly coupled with the life cycle of B. subtilis (49–51). Putative localization signals were not computationally identified for RacE1 or RacE2 (data not shown). An alternative possibility is that the enzymatic activities of RacE1 and RacE2 are regulated at the posttranslational level. Indeed, the enzymatic activity of glutamate racemase from E. coli is regulated by a peptidoglycan precursor (15, 27), a function that raises the possibility that a metabolite or peptidoglycan precursor could regulate the enzymatic activity of RacE1 or RacE2. Finally, our experiments revealed that RacE1 and RacE2 had distinct properties in solution when they were analyzed by gel filtration. The source of the unexpected apparent molecular weight for RacE2 in solution (51.5 × 10^3 ± 5.2 × 10^3) (Fig. 2C) is currently unknown but could be one or more heretofore unrecognized factors, including polydispersity, the binding of cofactors, posttranslational modifications, etc. Moreover, the significance of the apparent quaternary structural differences between RacE1 and RacE2 in solution is unclear, as is whether these differences are associated with regulation of enzymatic activities within the cell. Notably, within the family of glutamate racemases, quaternary structure differences apparently exist, as enzymes from B. subtilis (YrpC) (1), B. pumilus (33), L. fermentum (13, 19), and Pediococcus pentosaceus (37) have been reported to be monomers, while a dimeric form has been reported for A. pyrophilus (29) and there are conflicting reports about the quaternary structure of the E. coli enzyme (15, 62). Furthermore, RacE from B. subtilis has been reported to exist in equilibrium between a monomer and a dimer (57). Studies are currently under way in our laboratory to further explore the cellular roles of RacE1 and RacE2 and to elucidate the basis of regulation of their cellular activities.

In summary, we have demonstrated that racE1 and racE2 encode functional glutamate racemases, suggesting that the enzymatic activities of both enzymes should be targeted for inhibition. Although we have demonstrated experimentally that RacE1 and RacE2 possess similar, but not identical, enzymatic properties and catalytic residues, several differences in active site features are predicted for RacE1 and RacE2, suggesting that both active sites need to be considered when drugs for effective inhibition of glutamate racemase activity in B. anthracis are designed.

ACKNOWLEDGMENT

This work was supported by NIH-NIAID award U54AI057156 to the Western Regional Center of Excellence for Biodetection and Emerging Infectious Disease Research (S.R.B.; principal investigator, D. Walker).

REFERENCES

