Derepression of Excision of Integrative and Potentially Conjugative Elements from *Streptococcus thermophilus* by DNA Damage Response: Implication of a cl-Related Repressor

Xavier Bellanger, Catherine Morel, Bernard Decaris, and Gérard Guédon*

Laboratoire de Génétique et Microbiologie UMR1128, INRA, IFR110, Université Henri Poincaré Nancy 1, F-54506 Vandœuvre-lès-Nancy, France

Received 27 July 2006/Accepted 9 November 2006

A DNA-damaging agent, mitomycin C, derepresses the site-specific excision of two integrative and potentially conjugative elements from *Streptococcus thermophilus*, ICE*St1* and ICE*St3*. The regulation pathway involves a repressor related to phage lambda cl repressor. It could also involve a putative regulator related to another type of phage repressors, the “cl-like” repressors.

Whereas in silico analyses revealed that numerous genomic islands could be integrative and conjugative elements (ICEs) or elements derived from ICEs (2, 4, 9, 13, 15, 19, 25, 26), only a few ICEs have been described. ICEs excise by site-specific recombination, transfer through conjugation, and integrate into a replicon of the recipient cell (8). Whereas the regulation of the excision of numerous prophages is well known, the regulation of site-specific excision of only a few ICEs, including *Tn916*, ICEs from *Bacteroides*, pSAM2, and *clc*, has been described (6, 11, 22, 23). These few regulation systems are very different from each other. Recently, DNA-damaging agents were found to derepress the excision and transfer of two other ICE types, ICE*Bs1* from *Bacillus subtilis* (1) and IncJ elements, including SXT from *Vibrio cholerae* (3) and SXT-related elements from enterobacteria (18). Such regulation systems are similar to the derepression of the site-specific excision of numerous prophages by DNA damage.

Two putative ICEs, ICE*St1* and ICE*St3*, are integrated in the 3’ end of the *fda* locus of the lactic acid bacteria *Streptococcus thermophilus* CNRZ368 and CNRZ385, respectively (Fig. 1A). These ICEs harbor almost identical recombination and conjugation modules (20). The tyrosine integrase and the excisionase encoded by the ICE*St1* recombination module catalyze its excision by recombination between the *attL* and *attR* flanking sites, leading to an excised circular ICE harboring an *att* site and to a chromosomal *attB* site (10). Furthermore, ICE*St1* carries an internal recombination site related to *attL*, *attL’* (Fig. 1A) (20). Recombination between *attL’* and *attR* leads to excision of the circular form of a shorter putative ICE, ICE*St2*, carrying an *att* site. A genomic island corresponding to the left part of ICE*St1* and flanked by *attL* and *attB*’ sites remains integrated in *fda*.

The closely related regulation modules of ICE*St1*/ICE*St2* and ICE*St3* contain three shared open reading frames (ORFs) (*arp1*, *orfQ*, and *arp2*) (Fig. 1B). The ICE*St3* recombination module also includes three specific ORFs or pseudogenes (*orf385A*, *orf385B*, and *orf385C*), and the ICE*St1*/ICE*St2* recombination module contains two specific ORFs (*orfP* and *orfR*). The putative regulatory proteins encoded by *arp1*, *arp2*, and *orf385A* have a helix-turn-helix (HTH) DNA binding domain. The functions of the putative proteins encoded by the other ORFs are unknown.

The 5’ part of *arp1* encodes an HTH domain, and its 3’ part encodes a region characteristic of the COG2932 protein family, including the cl repressor of phage λ (9, 20). This region has two functions, cl autoproteolysis and cl oligomerization. In the presence of damaged DNA, the RecA protein, activated by single-stranded DNA (RecA*), induces autoproteolysis of cl and related proteins. Cleaved proteins are not able to oligomerize and therefore are not able to repress their target genes (12). In silico analysis suggested that DNA damage could derepress excision of ICEs from *S. thermophilus*.

To test this hypothesis, strains harboring ICE*St1*/ICE*St2* (CNRZ368) or ICE*St3* (CNRZ385) were grown at 42°C in HJL medium (24). Exponentially growing cells (optical density at 600 nm for MIC/4 and MIC/2, 0.04; optical density at 600 nm for 2× MIC and 4× MIC, 0.4) were treated with mitomycin C (MC) concentrations close to the MIC for 2.5 h to induce DNA damage. Then the recombination sites resulting from excision, *attL* and *attB* (ICE*St1* and ICE*St3*) or *attL’* (ICE*St2*), were amplified by PCR using 1 μg genomic DNA for CNRZ368 and 1 ng genomic DNA for CNRZ385. PCR experiments were performed in 25-μl mixtures using 0.5 U of Taq DNA polymerase (Biolabs) according to the manufacturer’s specifications and primers (melting temperatures, 49.6 to 53.1°C) described in the legend to Fig. 1. After an initial denaturation step consisting of 4 min at 95°C, PCR was performed for 30 cycles of denaturation for 30 s at 95°C, annealing for 30 s at 47.5°C, and extension for 30 s at 72°C, followed by final extension for 7 min at 72°C.

Treatment of CNRZ368 with MC induced an increase in the PCR signal intensity corresponding to the *attB* and *attL* sites, while this treatment did not induce an increase in the PCR signal intensity corresponding to the *fda* gene used as a control (Fig. 2). The most intense signal for both *attB* and *attL* sites was

---

* Corresponding author. Mailing address: Laboratoire de Génétique et Microbiologie UMR1128, INRA, Faculté des Sciences et Techniques, Université Henri Poincaré Nancy 1, 1 Bd des Aiguillettes, BP239, F-54506 Vandœuvre-lès-Nancy, France. Phone: (33) 03 83 68 49 72. Fax: (33) 03 83 68 11 76. E-mail: guedon@nancy.inra.fr.

† Published ahead of print on 17 November 2006.
obtained when 0.1 μg/ml MC (MIC/2) was used. The effects of MC were also determined by PCR amplification of fragments harboring attI and attB, using 1 μg to 1 ng genomic CNRZ368 DNA. The minimum amounts of template DNA that resulted in positive PCR amplification of the attB and attI sites were 100 ng using CNRZ368 DNA in the absence of MC and 10 ng after treatment with MC (MIC/2), suggesting that DNA damage caused by MC induced at least a 10-fold increase in ICE excision.

In the absence of MC, the following ratios of the excised circular form to the genome were found in the stationary phase of growth: 10^-6 for ICESt1, <10^-6 for ICESt2, and 9 x 10^-3 for ICESt3 (20). However, treatment of the strains harboring ICESt2 or ICESt3 with MC (MIC/2) was also found to induce excision (data not shown). This suggests that DNA damage induced excision of the three ICEs.

In order to examine the arp1 function, two fragments containing the 5’ and 3’ ends of arp1 of ICESt1/ICESt2 were cloned in the thermosensitive vector pG host9 (5, 17). The recombinant plasmid, carrying a very short deleted ORF, Δarp1, was introduced into S. thermophilus CNRZ368. A strain harboring the Δarp1 ORF instead of arp1 (CNRZ368 Δarp1) was obtained by two successive homologous recombination events.

The effects of the arp1 deletion were determined by PCR
amplification of fragments harboring attI and attB, using amounts of genomic DNA ranging from 1 μg to 1 ng for wild-type ICESt1 and from 1 μg to 1 pg for ICESt1 Δarp1 (Fig. 3). The minimum amounts of DNA that produced a positive result for the attB site were 10 ng of CNRZ368 template DNA and 10 pg of CNRZ368 Δarp1 template DNA. Using the same procedure, the minimum amounts of DNA that produced a positive PCR result for the attI site were 0.1 μg of CNRZ368 DNA and 0.1 ng of CNRZ368 Δarp1 DNA. The arp1 deletion did not induce an increase in the PCR signal intensity when the fda gene was used as a control. Thus, deletion of the arp1 gene resulted in at least a 1,000-fold increase in the concentration of ICESt1 attB and attI sites. Furthermore, whereas ICESt1 and ICESt2 were excised at different frequencies, the concentrations of a fragment carrying the att’ site from wild-type ICESt2 or ICESt2 Δarp1 (Fig. 1A) increased by a factor similar to that observed for ICESt1 (data not shown). Therefore, the arp1 gene repressed the excision of ICESt1 and ICESt2.

To validate the assumption that Arp1 autoproteolysis is involved in the induction of ICE excision by MC, exponentially growing cells of CNRZ368 Δarp1 were treated with MC at a concentration of 0.1 μg/ml (MIC/2). In three replicate experiments, the minimal amount of DNA that allowed detection of attB amplification (1 ng) was the same in the presence and in the absence of MC. Furthermore, in these three replicate experiments, the minimal amounts of DNA that allowed detection of attI amplification were 0.1 ng or 1 ng in the absence of MC and 0.1 ng after treatment with MC. Therefore, the inducibility of ICESt1 Δarp1 excision by MC was reduced or suppressed compared to the results for the same MC treatment in the wild-type strain. This suggests that MC treatment alleviates the repression of ICESt1 excision mediated by Arp1. The minimal amount of DNA that allowed detection of attI amplification (1 ng) was the same in the presence and in the absence of MC. This suggests that MC treatment also alleviates the repression of ICESt2 excision mediated by Arp1. In the same way, MC treatment derepressed the excision and transfer of another ICE, SXT from V. cholerae, probably by promoting the autocleavage of a Cl homologue encoded by the element (3).

The functions of the other genes harbored by the ICESt1/ICESt2 and ICESt3 regulation modules (Fig. 1B) remain unknown. Nevertheless, the regulation modules of numerous Firmicutes prophages, such as TP901-1 from Lactococcus lactis (16), and of another ICE, ICEBs1 from B. subtilis (1), encode an OrfQ homologue and a “cl-like” repressor (i.e., a repressor related to Arp2), while none of these elements encode a genuine homologue of the Cl repressor. OrfQ and the OrfQ homologues have a DUF955 domain that has a conserved H-EX-X-H motif, suggesting that these proteins could be Zn2+ metalloproteinases (21). However, the activity of these proteins has not been demonstrated. Whereas the “cl-like” proteins encoded by prophages repress their lytic growth, these proteins are shorter than genuine cl homologues. Indeed, the cl-like repressors contain an HTH DNA binding domain but lack a region harboring autoproteinolytic and oligomerization functions related to the genuine Cl. However, the TP901-1 “cl-like” repressor binds to operators as dimers and higher multimers (14). Furthermore, the excision of prophages with cl-like genes and orfQ homologues, such as φSfi21 from S. thermophilus (7) or TP901-1 (16), is inducible by MC, and the prophage TP901-1 cl-like gene is involved in the lytic phase induction pathway. Moreover, the induction of the prophage TP901-1 (16) and of ICEBs1 by MC (1) is RecA dependent. Thus, arp2 and orfQ might also be involved in the derepression pathway of the excision of the S. thermophilus ICEs.

To our knowledge, ICESt1/ICESt2 and ICESt3 are the only integrative elements (i.e., phages, ICEs, or related elements) that encode a genuine cl homologue and might encode a cl-like homologue. Since MC induces the conjugative transfer of SXT, an ICE from V. cholerae coding for a genuine cl (3), and of ICEBs1, an ICE from B. subtilis coding for a cl-like repressor (1), DNA damage could regulate not only the excision but also the conjugative transfer of the ICEs from S. thermophilus.

REFERENCES


