Characterization of Hydrogen Peroxide-Induced DNA Release by Streptococcus sanguinis and Streptococcus gordonii

Jens Kreth,1* Hung Vu,1 Yongshu Zhang,1 and Mark C. Herzberg1,2

Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455,1 and Mucosal and Vaccine Research Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota 554172

Received 11 July 2009/Accepted 6 August 2009

Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H2O2). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H2O2 causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.

The release of bacterial DNA into the environment is of recent interest since this polymer is now recognized to stabilize cell-to-cell adherence and biofilm architecture (13, 34, 42). Treatment of extracellular DNA (eDNA) with DNase results in reduced intercellular stickiness, consistent with an adhesive function for eDNA. Furthermore, eDNA from Neisseria meningitidis appears to have sufficient structural integrity to transform competent strains (11), indicating chromosomal origin. Since the abundance of eDNA is influenced by growth conditions, DNA release can also be regulated (40).

DNA release is typically a consequence of cell lysis. Linked to DNA release, genetic transformation is the natural ability of competent bacterial species to take up DNA from the environment (13, 34, 42). During competence development, Streptococcus pneumoniae DNA is released by lysis of a subpopulation of cells (30, 42). Cell lysis and DNA release are controlled in a cell density-dependent signal transduction process. The S. pneumoniae comX regulon, carrying late competence genes, also includes the murein hydrolase genes lytA and cbpD (19, 42). Murein hydrolases digest structural components of the peptidoglycan, contributing to remodeling, recycling, and daughter cell separation. Furthermore, murein hydrolases trigger autolytic cell wall digestion, leading to release of DNA and other cellular content into the environment (36). The autolysis of bacterial cells as part of a regulated death program seems to be an important source for eDNA in diverse species, including Staphylococcus aureus (4, 36, 37), Staphylococcus epidermidis (35), Enterococcus faecalis (44), and Pseudomonas aeruginosa (1). In these species, the eDNA contributes to biofilm formation as a component of the extracellular biofilm matrix (35, 37, 44).

Unlike for cell lysis-dependent release, the oral streptococci appear to induce eDNA release by a novel mechanism. In dual-species cultures, the oral commensals Streptococcus sanguinis and Streptococcus gordonii release eDNA in a manner dependent on pyruvate oxidase (Pox) generation of hydrogen peroxide (H2O2) under the control of ambient oxygen (23). In this report, we now provide direct evidence of selective H2O2-induced eDNA release by these oral commensal streptococci.

MATERIALS AND METHODS

Bacterial strains and media. S. sanguinis SK36 (48) and S. gordonii DL1 (32), and their isogenic Pox− mutants JKH1 and JKH2 (23), were routinely grown anaerobically (90% N2-5% CO2-5% H2) or aerobically (5% CO2) at 37°C in brain heart infusion broth (BHI; Difco, Sparks, MD) or on BHI agar plates. When required, cultures of JKH1 and JKH2 were supplemented to 500 μg/ml spectinomycin.

eDNA and eRNA quantification. To determine the eDNA and extracellular RNA (eRNA) release kinetics during growth, S. sanguinis, S. gordonii, and their isogenic Pox− mutants were grown overnight in BHI (mutants supplemented with 500 μg spectinomycin). The overnight cultures were washed twice with fresh BHI medium to remove contaminating extracellular nucleic acids, diluted to an absorbance at 600 nm (A600) of approximately 0.05 in 20 ml BHI and incubated aerobically on a rocking platform for maximal H2O2 production (23). Under these conditions, neither S. sanguinis nor S. gordonii forms a biofilm due to shear forces generated by rocking. At the indicated times, cells were removed by centrifugation for 2 min at 16,000 × g at 4°C. Supernatants (1 ml) were transferred to new tubes containing 0.5 ml TE buffer (Tris-EDTA, pH 7.8 to 8.2) saturated with premixed phenol-chloroform–isoamyl alcohol (25:24:1) (saturated phenol at 25°C, pH of 6.5 to 6.9), and the mixture was vortexed for 30 s. To precipitate DNA, the mixture was centrifuged at 4°C for 5 min at 16,000 × g. The aqueous phase (0.8 ml) was removed and mixed with 80 μl of 3 M sodium acetate, pH 5.2, and 500 μl of 100% 2-propanol. The mixture was then centrifuged for 10 min at 16,000 × g. The supernatant was decanted, and the precipitated sample was air dried and suspended in 25 μl of deionized nucleic-acid-free H2O (Fisher Scientific; Fair Lawn, NJ). Total DNA from 1 ml of cell suspension was extracted by mechanical disruption of cells as described earlier (50). DNA was precipitated in the same way as described for eDNA. To visualize nucleic
TABLE 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Functiona</th>
<th>Sequence (5’ to 3’)</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S strep F</td>
<td>DNA release quantification</td>
<td>AAGCAACGCGAAGAACCTTTA</td>
<td>23</td>
</tr>
<tr>
<td>16S strep R</td>
<td>DNA release quantification</td>
<td>GTTCGCTGATAGTGCCCACAC</td>
<td>23</td>
</tr>
<tr>
<td>EUB 338</td>
<td>Fluorescent FISH probe</td>
<td>GCTGCCCGCCGTAGGAGT</td>
<td>2</td>
</tr>
<tr>
<td>Ss gyrB F</td>
<td></td>
<td>AGTGAATTGGAACAGTCGAAG</td>
<td></td>
</tr>
<tr>
<td>Ss gyrB R</td>
<td></td>
<td>TTCAACGGTAATTGICTGCCA</td>
<td></td>
</tr>
<tr>
<td>Ss ccpA F</td>
<td></td>
<td>TGCCGACATCAGTGCAGTA</td>
<td></td>
</tr>
<tr>
<td>Ss ccpA R</td>
<td></td>
<td>GAAGATCCCGTTCTTCAAA</td>
<td></td>
</tr>
<tr>
<td>Ss clpX F</td>
<td></td>
<td>TGGGAAAGACAAAGATGAGG</td>
<td></td>
</tr>
<tr>
<td>Ss clpX R</td>
<td></td>
<td>AGCACTCTGTCAAAATTCAAG</td>
<td></td>
</tr>
<tr>
<td>Ss ppsA F</td>
<td></td>
<td>ACTTCGCGGTGCTCTTTTT</td>
<td></td>
</tr>
<tr>
<td>Ss ppsA R</td>
<td></td>
<td>CCGGCTTGTACCAAAGGATA</td>
<td></td>
</tr>
<tr>
<td>Ss LDH F</td>
<td></td>
<td>TGGCATTGGCTGCTATACCA</td>
<td></td>
</tr>
<tr>
<td>Ss LDH R</td>
<td></td>
<td>TACCATACCGTGAGCACA</td>
<td></td>
</tr>
<tr>
<td>Sg ccpA F</td>
<td></td>
<td>TCCCAACTCTTCTTGTGCTA</td>
<td></td>
</tr>
<tr>
<td>Sg ccpA R</td>
<td></td>
<td>CCAAAACCTTTTGCTAAAGG</td>
<td></td>
</tr>
<tr>
<td>Sg clpX F</td>
<td></td>
<td>CCACGGGAACACCTCTCATAA</td>
<td></td>
</tr>
<tr>
<td>Sg clpX R</td>
<td></td>
<td>GCTCTGCTGCTGGGAGTG</td>
<td></td>
</tr>
<tr>
<td>Sg ppsA F</td>
<td></td>
<td>CCGATTTCAGCCCTTACA</td>
<td></td>
</tr>
<tr>
<td>Sg ppsA R</td>
<td></td>
<td>CAAGGCCCTTCGCTCCTCT</td>
<td></td>
</tr>
<tr>
<td>Sg clpF X</td>
<td></td>
<td>CCTTGGGATTAGCTGTGAA</td>
<td></td>
</tr>
<tr>
<td>Sg clpR X</td>
<td></td>
<td>TCCATCATGTGTTTCTTGAT</td>
<td></td>
</tr>
<tr>
<td>Sg sspA 1</td>
<td></td>
<td>CTAACAACTCTTAGAAAGGCGCAAGAC</td>
<td></td>
</tr>
<tr>
<td>Sg sspA 2</td>
<td></td>
<td>CCTGCGTAAATATCAGAAGACATGC</td>
<td></td>
</tr>
<tr>
<td>Ss 0243 1</td>
<td></td>
<td>CTGCAAGTCCGGTGCTAGAAGCT</td>
<td></td>
</tr>
<tr>
<td>Ss 0243 2</td>
<td></td>
<td>CTGCAAGTCCGGTGCTAGAAGCT</td>
<td></td>
</tr>
</tbody>
</table>

a The function is eDNA characterization unless otherwise noted.
b The source is this work unless otherwise noted.

acids. 1-μl samples were electrophoresed on 1% agarose gels and stained with ethidium bromide (1 μg/ml).

The relative quantity of chromosomal DNA (chDNA) was determined using a standard curve of dilutions (1:1, 1:25, 1:125, and 1:625), using universal primers for the 16S rRNA genes (16S strep F and 16S strep R) (23). S. gordonii and S. sanguinis each have four chromosomal copies of the 16S rRNA gene. DNA from the standard dilutions and samples from S. sanguinis and S. gordonii were amplified by real-time PCR as described previously (23). The quantity of DNA was calculated relative to the cycle threshold values of the DNA dilutions. Real-time PCR was performed using FullVelocity SYBR green quantitative PCR master mix (Stratagene) in accordance with the manufacturer’s instructions. The concentration of RNA was determined using a Quant-iT RNA assay kit (Invitrogen). Chromosomal DNA (chDNA) was isolated by following standard procedures, using lysozyme digestion of cells, chloroform-phenol extraction, and isopropanol precipitation, essentially as described previously (28). PCR products were run on an agarose gel as described above.

Semi-quantitative PCR was performed with precipitated eDNA samples by using the same protocol. Briefly, 0.5 μl of eDNA (suspended in 25 μl of deionized H2O) was added to 24.5 μl PCR master mix. PCR was run for 20, 23, and 26 cycles with the 16S rRNA-specific oligonucleotides, and the concentration of cells, chloroform-phenol extraction, and isopropanol precipitation, essentially as described previously (28). PCR products were run on an agarose gel as described above.

DNase and RNase. For RNase and DNase treatment of nucleic acids, samples were treated for 1 h at 37°C with either 5 μl of 0.4-mg/ml RNase A (Sigma-Aldrich) or 5 units of RQ1 DNase (Promega) in 25 μl final volume.

Cell aggregation. For cell aggregation, cells from overnight cultures were washed twice in BHI and resuspended in 2 ml BHI (5-ml tubes) to give a final concentration of 8 × 108/ml. 0.5 ml of eDNA was added to 3 μl of deionized H2O (suspended in 3 μl deionized water) to a final concentration of 0.05. Cells were incubated at 37°C for 1 h on a rocking platform. 15 μl (Promega) was added. Cells were then incubated for 1 h at 37°C, and the final A600 was recorded.

Fluorescence microscopy and fluorescent labeling of bacteria. Cells were grown in BHI on a rocking platform at 37°C to late logarithmic phase (A600 ~0.6 to 0.7). To differentiate between bacteria with compromised or intact membranes, a Live/Dead BacLight bacterial viability kit was used in accordance with the manufacturer’s recommendations. Microscopy. The dried were used directly to the growth medium and incubated for 10 min prior to microscopy. The kit contains two different dyes, propidium iodide (PI) conferring red fluorescence and SYTO9 conferring green fluorescence. PI diffuses only into cells with compromised membranes and binds to DNA, whereas intact cells can be stained only with SYTO9 (8).
Cells with high metabolic activity were fluorescently labeled with CellTracker Green CMFDA in accordance with the manufacturer's instructions (Invitrogen). Cells were incubated for 1 h at 37°C in the presence of 5 μM dye (15) and then examined microscopically.

Fluorescence in situ hybridization (FISH) was performed essentially as described earlier (15). The oligonucleotide probe for 16S rRNA (EUB338) was 5′-labeled with Alexa Fluor 488 N-hydroxysuccinimide ester and synthesized by Integrated DNA Technologies (Coralville, IA). To perform FISH, planktonic cells in 40 μl of hybridization solution (0.9 M NaCl, 20 mM Tris-HCl, 20% formamide, 0.01% sodium dodecyl sulfate) containing 100 ng of the oligonucleotide probe were incubated for 4 h at 46°C in a water bath. Cells were washed twice with washing solution (0.18 M NaCl, 20 mM Tris-HCl, 0.01% sodium dodecyl sulfate), and total bacteria in the FISH sample were stained with 1 ng DAPI (4′,6-diamidino-2-phenylindole) (Merck, Darmstadt, Germany) for 10 min. Upon binding to DNA, the DAPI fluoresced intensely and cells were observed by microscopy.

Bacterial cell walls were stained by incubating cells for 1 h with 1 μg per ml Alexa Fluor 555-labeled wheat germ agglutinin (WGA; Invitrogen) and washed twice with PBS. For microscopy, 8 μl of cell suspension was applied to a microscope slide, covered with a coverslip, and sealed with clear nail polish to avoid evaporation. Microscopy was performed with a Nikon Eclipse E800 microscope and a 60×/1.40-numerical-aperture or 100×/1.40-numerical-aperture Plan Apo oil lens. Pictures were processed with MetaMorph software (Molecular Devices, Sunnyvale, CA). Contrast and brightness for the entire image were adjusted nonselectively.

Statistical analysis. Descriptive statistics, including the mean and standard deviation (SD), were calculated. Statistical analysis of data was performed with QuickCalcs online calculators (http://www.graphpad.com/quickcalcs/index.cfm) using t test software to compare the means of results from two groups. Data were considered significantly different if the two-tailed P value was ≤0.05.

RESULTS

Characterization of eDNA release kinetics of S. sanguinis and S. gordonii. S. sanguinis and S. gordonii wild-type strains and Pox− mutants showed similar generation times in BHI medium, but the Pox− mutants yielded higher cell densities in stationary phase (Fig. 1A). To determine the kinetics of release, the relative amount of eDNA in the medium was analyzed using agarose gel electrophoresis (Fig. 1B) and quantified with real-time PCR (Fig. 1C). By 270 min of incubation, the wild-type strains of both species released DNA resolving as a high-molecular-weight band (Fig. 1B, lanes 1 and 2), which appeared to increase in intensity by 540 min. At all times, the Pox− mutants appeared to release less high-molecular-weight DNA (Fig. 1B, lanes 3 and 4). The kinetics of eDNA presence in the medium was confirmed by quantitative PCR (Fig. 1C). By 540 min (stationary phase), the wild-type strains released about 10-fold more DNA than the Pox− mutants (Fig. 1C). When normalized for cell density, the wild-type strains showed increased release of eDNA and the Pox− mutants showed decreased release of eDNA over time (Fig. 1C). These results suggest that S. sanguinis and S. gordonii release DNA in a Pox-dependent manner during growth.

Total amount of DNA versus eDNA. To determine the ratio of eDNA to the total amount of cellular DNA, cells were grown to late logarithmic growth phase and the concentrations of DNA in the supernatant and whole-cell lysates were measured. Total DNA from S. sanguinis was 5,121 ± 813 ng/ml and eDNA 953 ± 49 ng/ml (mean ± SD for duplicate samples from two independent experiments). For S. gordonii, total DNA was 7,319 ± 804 ng/ml and eDNA 1,012 ± 100 ng/ml, suggesting that eDNA represents about 15 to 20% of the total cellular DNA.

H2O2 dependence of eDNA release. To determine whether eDNA release is stimulated by H2O2, we added H2O2-degrading catalase to wild-type cultures of S. sanguinis and S. gordonii grown under H2O2-producing conditions as described previously (23). Catalase reduced eDNA detected in overnight cultures more than 10-fold (Fig. 2A), to levels similar to those in
anaerobic mixed cultures of these bacterial strains (no H₂O₂ production) (23). Addition of H₂O₂ (final concentration 1 mM) to mid-logarithmic phase (A₆₀₀, ~0.4) Pox⁻ mutants increased eDNA (Fig. 2B). Complementing Pox⁻ mutants rescued eDNA release to wild-type strain levels (Fig. 2C). H₂O₂ appeared to be directly involved in DNA release (eDNA) under aerobic conditions.

Characterization of eDNA. The genomic structures of eDNA and chDNA were compared. In each DNA sample, selected genes were amplified from different loci on the chromosome. The chDNA genes ppsA, clpX, ccpA, ldh, and gyrA (gyrB for S. sanguinis) could be amplified from eDNA from all wild-type strains and Pox⁻ mutants (Fig. 3A and B). The primers for clpX and ccpA encompassed a region of 1 kb, whereas the other primers amplified targets of about 0.12 kb, indicating that the wild-type and mutant eDNAs were similar to each other and chDNA. We were also able to amplify larger segments (over 4 kb) from both species (Fig. 3C), suggesting that the genomic sequence is intact over large sections of eDNA.

Detection of eRNA. eDNA levels began to increase over baseline at about 270 min of growth and continued to increase during log phase until plateauing at 540 min. To determine if leaky cells released eDNA, the kinetics were compared to those of eRNA. During electrophoresis of eDNA, bands that
appeared to correspond to 16S rRNA, 23S rRNA, and low-molecular-weight nucleic acids usually seen during RNA isolation from *S. sanguinis* and *S. gordonii* were detected (Fig. 4A). To verify that RNA is present in the media, precipitated nucleic acids from *S. gordonii* were treated with RNase or DNase and analyzed using agarose gel electrophoresis (Fig. 4B). The low-molecular-weight band disappeared upon treatment with RNase but not DNase (Fig. 4B, lane 2). In contrast, DNase digested the high-molecular-weight band (Fig. 4B, lane 1).

A maximum of 230 ng per ml eRNA was recovered from *S. sanguinis* wild-type supernatant, higher than the level for *S. gordonii* or either Pox− mutant (Fig. 4C). When normalized to cell density, however, the highest concentration of eRNA was recovered during initial logarithmic growth and then declined for all four strains (Fig. 4D), which contrasted with the release kinetics of eDNA (Fig. 1C). To determine whether RNA is degraded after release, total RNA from *Streptococcus mutans* (2 μg/ml) was added to the cultures. After 60 min of incubation, a 1-ml aliquot was removed. RNA was precipitated and analyzed for decay on an agarose gel by comparing pixel intensities of RNA bands with ImageJ software (http://rsb.info.nih.gov/ij/). Shown are means ± SD of results from at least two independent experiments with BHI, with the 0-min arbitrary level set to 100%.

FIG. 4. Characterization of eRNA. (A) Agarose gel electrophoresis (1%) of RNA stained with ethidium bromide (1 μg/ml) as described in Materials and Methods. The photograph is representative of three independent experiments with similar results. Lanes: 1, *S. gordonii*; 2, *S. sanguinis*; 3, *S. gordonii* Pox−; 4, *S. sanguinis* Pox−. (B) Precipitated nucleic acids from *S. gordonii* were digested with DNase RQ1 and RNase A, resolved by agarose gel electrophoresis (1%), and stained with ethidium bromide (1 μg/ml). (C) Quantification of eRNA by use of an RNA-specific fluorescent dye with the Quant-iT RNA assay. Sg, *S. gordonii*; Ss, *S. sanguinis*. (D) Relative amounts of RNA normalized to cell density measured at A_600. Data presented are the means ± SD of results from three independent experiments done on different days. (E) eRNA degradation. Total RNA from *S. mutans* (2 μg/ml) was added to the cultures. After 60 min of incubation, a 1-ml aliquot was removed. RNA was precipitated and analyzed for decay on an agarose gel by comparing pixel intensities of RNA bands with ImageJ software (http://rsb.info.nih.gov/ij/). Shown are means ± SD of results from at least two independent experiments with BHI, with the 0-min arbitrary level set to 100%.
wild-type strains and Pox/H11002
wild type and the Pox/sanguinis
of eATP appearance differed (Fig. 5A). After 180 min, the S. Pox
mutations (300 min) (Fig. 5A). At 600 nm. Data presented are the means
concentration relative to an ATP dilution standard curve was deter-
mined. (B) Relative ATP amount normalized to cell density measured
at 600 nm. Data presented are the means ± SD of results from three
independent experiments.

Release of ATP. To learn whether eDNA is associated with
release of other cellular content, we measured the concentra-
tions of ATP in the supernatants of S. sanguinis and S. gordonii
wild-type strains and Pox− mutants grown under H2O2-producing
conditions. ATP has been used as indicator of nisin-
induced cell lysis (45). The S. gordonii wild type and the Pox−
mutant yielded similar amounts of extracellular ATP (eATP),
maximizing at 180 min (Fig. 5A). For S. sanguinis, the kinetics
of eATP appearance differed (Fig. 5A). After 180 min, the S.
sanguinis wild type and the Pox− mutant released increasing
amounts of ATP to reach maximal concentrations about twice
that of S. gordonii. Compared to the wild type, the S. sanguinis
Pox− mutant yielded a maximum eATP concentration about
60 min later. When normalized to cell densities, all four strains
showed similar continuous decreases in eATP concentration
over time (Fig. 5B), suggesting that lysis-induced release of
ATP did not occur. When added to mid-logarithmic-phase
cells, ATP appeared to be relatively stable, and eATP re-
mained undegraded after release from cells (data not shown).

Cell viability and integrity. To learn whether the level of
eDNA was associated with membrane compromised cells, late-
logarithmic-growth-phase cells grown under H2O2-producing
conditions (300 min) (A660 for wild-type strains, ~0.9; A660 for
Pox mutants, ~1.2) were stained with PI and SYTO9 to ascen-
tain cell viability. PI would be excluded from cells with intact
membranes. S. sanguinis and S. gordonii wild-type strains
showed higher proportions of nonviable red fluorescent cells
than the Pox− mutants (Fig. 6A). On the basis of enumeration
of PI-stained red cells, about 10% of the wild-type cell popu-
lation was membrane compromised (S. gordonii, 9.6% ±
0.29%; S. sanguinis, 10.9% ± 0.08%). The Pox− mutant pop-
ulation, however, contained less than 1% compromised cells
(S. gordonii, 0.7% ± 0.52%; S. sanguinis, 0.95% ± 0.43%).
These data appeared to be consistent with the approximately
10-fold difference in eDNA release between wild-type and
Pox− mutant cells in late logarithmic to early stationary
phase (Fig. 1C).

To determine the metabolic activity of the PI-stained red
fluorescent cells, cells were counterstained using CellTracker
Green dye (Fig. 6B). Cells staining with PI showed only faint
green fluorescence in comparison to the surrounding cells,
indicating weak, residual metabolic activity (Fig. 6B). To
determine whether cell wall lysis had occurred, we probed wall
integrity by using WGA, which selectively binds to N-acetyl-
glucosamine (GlcNAc) of the peptidoglycan. Nonviable and
viable S. sanguinis (Fig. 6C) and S. gordonii (data not shown)
cells showed similar levels of cell wall integrity.

If H2O2 adversely affected cell envelope integrity, we would
expect ribosomes to be lost. Wild-type cells were grown under
H2O2-producing conditions, and ribosome content was as-
sessed using FISH with the oligonucleotide probe EUB338
(2) for eubacterial 16S rRNA (15). All cells hybridizing with
the 16S rRNA probe (bright green fluorescence) also counter-
tained with the DNA fluorescent dye DAPI (blue fluo-
rescence), indicating no obvious loss of ribosome content
(Fig. 6D).

Autolysis of S. sanguinis and S. gordonii. Although the data
suggested that cells maintain wall integrity and ribosomes in
the presence of H2O2, eDNA could be released from an
otherwise undetectable portion of autolysing cells. To learn
whether cells undergo autolysis during prolonged incubation
in BHI, absorption was measured over several days as an indica-
tor of cell density. Over time, there was no obvious loss in
absorption (Fig. 7A). Since E. faecalis was recently described
as autolytic during eDNA generation (44), we monitored S.
sanguinis and S. gordonii under autolytic conditions for other
firmicutes and for comparison to E. faecalis strains TX5179
(49) and JH2 (18). Initially, A660 decreased 10% in all strains,
consistent with cell shrinkage after transfer into autolysis
buffer (Fig. 7B). After 80 min, the A660 of S. sanguinis and S.
gordonii remained constant through overnight incubation (data
not shown). In contrast, the two strains of E. faecalis showed
cell lysis at different rates (Fig. 7B). Since H2O2 triggers DNA
release, we determined whether H2O2-induced release of
DNA is the result of cell lysis. S. sanguinis and S. gordonii were
incubated in the presence of 1 mM and 10 mM H2O2. No
autolysis was detected (Fig. 7C). These data suggest that both
streptococcal species do not lyse substantially under conditions
known to cause lysis of other firmicutes.

Antibiotic-induced release of DNA, RNA and ATP. Ampicil-
lin can inhibit bacterial cell wall synthesis and induce cell
leakage and lysis in streptococci (17). S. sanguinis and S. gordonii
wild-type cells were grown under H2O2-producing condi-
tions with ampicillin and monitored for release of DNA,
RNA, and ATP. Ampicillin caused immediate growth arrest of the cells (Fig. 8A). When normalized to cell density, eDNA was found to be threefold greater in ampicillin-treated than in untreated *S. sanguinis* cells at 300 min \((P = 0.003) \) (Fig. 8B). *S. gordonii* eDNA was consistently greater in response to ampicillin, but the difference was not significant. With ampicillin, *S. sanguinis* eRNA increased about threefold \((P = 0.003) \) (Fig. 8C) and *S. gordonii* eATP was about fivefold higher \((P = 0.0001) \) (Fig. 8D). *S. sanguinis* did not release significantly more ATP when treated with ampicillin. The releases of DNA, RNA, and ATP were increased compared to the levels for untreated cells, but the increase was not always significant. In response to ampicillin, *S. sanguinis* and *S. gordonii* cell walls lost staining with WGA lectin at 300 min (data not shown). Hence, DNA, RNA, and ATP are released when lysis is induced by ampicillin, and all accumulate in the medium.

eDNA promotes *S. sanguinis* aggregation. When grown under aerobic, H\(_2\)O\(_2\)-producing conditions, the *S. sanguinis* wild type forms visible aggregates, which precipitate to the bottom of the tube over time (Fig. 9A). Under the same conditions, the Pox\(^{-}\) mutant did not aggregate or precipitate (Fig. 9A). To determine whether aggregation is mediated by eDNA, DNase was added to cultures growing under aerobic, H\(_2\)O\(_2\)-producing conditions. The DNase-treated cells showed reduced aggregation (Fig. 9B). *S. sanguinis* aggregation was also induced by H\(_2\)O\(_2\) in a dose-dependent manner (Fig. 9C). Under the same conditions, *S. gordonii* did not form aggregates.
DISCUSSION

This is the first report showing that eDNA is produced in response to the streptococcal virulence factor H$_2$O$_2$. The H$_2$O$_2$-dependent release of DNA without autolysis may reflect a special adaptation to the biofilm environment of *S. sanguinis* and *S. gordonii*, where autolysis could create open spaces where competitors would invade. During early oral biofilm formation, the concentration of oxygen is sufficient for *S. sanguinis* and *S. gordonii* to produce H$_2$O$_2$ (29). The production of H$_2$O$_2$ would help both species to compete efficiently with other hydrogen peroxide-sensitive early colonizers. Since eDNA promotes cell-to-cell adhesion, release of DNA appears to support oral biofilm formation and may facilitate exchange of genetic material among competent strains. In addition, the release of
DNA might promote *S. sanguinis* and *S. gordonii* adhesion to the tooth surface. For *S. sanguinis*, eDNA appeared to contribute to intercellular adhesion since DNase treatment reduces cell aggregation in aerobic cultures. eDNA contributes to intercellular interactions in other species since DNase treatment also prevents clumping of *P. aeruginosa* cells (1) and cell-to-cell adhesion of *P. aeruginosa* and *Rheinheimera baltica* (1, 6).

As reported previously for other species (12, 13, 24, 41), *S. sanguinis* and *S. gordonii* eDNA is characterized as chDNA. With the use of PCR to show the integrity of the eDNA, streptococcal chromosomal regions up to 5 kb could be amplified. Moreover, eDNA and high-molecular-weight DNA (>12 kb) showed similar mobilities on agarose gels, and no obvious degradation was seen. Hence, streptococcal eDNA is strongly suggested to be largely intact chDNA.

For most species investigated, eDNA appears upon autolysis of a subpopulation of cells, which requires the activity of

![FIG. 8. Ampicillin-induced lysis of *S. sanguinis* (Ss) and *S. gordonii* (Sg). (A) Representative growth curve demonstrating the effect of ampicillin addition (arrow depicts time of addition). (B to D) Release of DNA, RNA, and ATP into the medium after induced lysis with ampicillin (8 µg/ml) was measured over time. The amounts of DNA, RNA, and ATP were determined as described for the other experiments and normalized to the cell density at A._{600}. Data presented are the means ± SD of results from three independent experiments done on different days.](http://jb.asm.org/)

![FIG. 9. Effect of aerobic growth and DNase treatment on the aggregation of the *S. sanguinis* wild type and the Pox^-* mutant. (A) Overnight cultures of the wild type and the Pox^-* mutant obtained after further static incubation has resulted in aggregation of the wild type but not the Pox^-* mutant strain. (B) Aggregation inhibition by DNase treatment of wild-type cells during anaerobic growth. Data presented are the means ± SD of results from two independent experiments done on different days. (C) H2O2-induced aggregation of the *S. sanguinis* Pox^-* mutant.](http://jb.asm.org/)
murein hydrolases (30, 36, 37, 42). Both *S. gordonii* and *S. sanguinis* encode putative N-acetylmuramidases (46), required for cell growth during cycles of controlled lysis, remodeling, and synthesis of new peptidoglycan building blocks (46). To what extent these murein hydrolases contribute to the release of DNA in oral streptococci is currently under investigation. Interestingly, earlier reports failed to detect peptidoglycan hydrolase activity in *S. sanguinis* (16, 17).

H$_2$O$_2$ addition did not result in measurable autolysis, although H$_2$O$_2$ can trigger the release of eDNA. Hence, there exists an eDNA-releasing mechanism for *S. gordonii* and *S. sanguinis* that does not appear to involve the generalized autolysis reported for other species, like *S. pneumoniae* (38). Consistent with this conclusion, DNA release appeared independent of release of other intracellular components, like ATP. ATP has been used to monitor nisin-induced lysis of lactobacilli (45). Interestingly, RNA was detected in the supernatant of *S. gordonii* and *S. sanguinis* during initial growth, but the concentration then declined over time. The decline might be caused by eRNA nuclease activity, since growing cells degraded added RNA. It is likely that *S. sanguinis* and *S. gordonii* release RNA only during initial growth. The release kinetics of RNA, thus, differed from those of DNA. DNA, RNA, and ATP, however, did leak out of cells treated with ampicillin, which is known to cause cell wall damage (17). Hence, *S. sanguinis* and *S. gordonii* wild-type strains are strongly suggested to selectively release DNA in an H$_2$O$_2$-dependent manner.

Hydrogen peroxide production by *S. sanguinis* and *S. gordonii* promotes release of eDNA under aerobic conditions, as we have reported (23). Consistent with these findings, Pox-mediated production of H$_2$O$_2$ occurs only in aerobically grown cells (9, 10). As we now show, isogenic Pox$^-$ mutants produce significantly less eDNA during growth. Since catalase reduces eDNA from wild-type cells to Pox$^-$ mutant levels and H$_2$O$_2$ addition to Pox$^-$ mutants triggers eDNA release, H$_2$O$_2$ is the principal active agent. In the presence of catalase, wild-type cells showed significantly reduced but detectable eDNA, suggesting that *S. gordonii* and *S. sanguinis* may possess other H$_2$O$_2$- and Pox-independent eDNA release mechanisms.

S. sanguinis and *S. gordonii* are pioneer colonizers of oral biofilms (20), and about 80% of early colonizers are oral streptococci (31, 39). The oral streptococci share similar metabolic requirements, which in the nutritionally challenging oral environment promote fierce competition for space and nutrients. To compete with other species, *S. sanguinis* and *S. gordonii* produce hydrogen peroxide to antagonize peroxide-sensitive species, as we have reported (22). While *S. sanguinis* and *S. gordonii* produce H$_2$O$_2$, other oral streptococcal species are the sensitive targets. Although *S. sanguinis* and *S. gordonii* appear to resist autolysis in the presence of H$_2$O$_2$, we speculate that H$_2$O$_2$-compromised cell membranes cause the apparently specific release of DNA. We are currently investigating whether compromised membranes trigger partial autolysis and limited or incomplete digestion of cell wall peptidoglycan. Membrane-compromised cells show less metabolic activity (Fig. 6B), but the cell wall remains intact (Fig. 6C). The intact cell walls enable cells to retain intracellular components, including ribosomes (Fig. 6D). H$_2$O$_2$-producing *S. sanguinis* and *S. gordonii* strains grow to lower cell densities than their respective isogenic Pox$^-$ mutants. Wild-type cultures contain about 10-fold more membrane-compromised cells (Fig. 6A) than Pox$^-$ mutants and release correspondingly more eDNA. The eDNA represents about 15 to 20% of the total chDNA. While the extraction technique can underrepresent total DNA (7, 27, 51), we compared three different techniques (enzymatic digestion, boiling, and mechanical disruption) and reported only mechanical disruption as yielding the largest amount of DNA. Nonetheless, our results suggest that the membrane-compromised cells are likely responsible for the release of DNA without generalized lysis. While H$_2$O$_2$ compromises membrane integrity in a small fraction of streptococcal cells, leading to eDNA release, cells must be programmed to determine which cells actually functionalize (or resist) DNA release.

A developmental program for bacterial cell death and DNA release has been shown for several species, including streptococci (recently reviewed in reference 36). Under our experimental conditions, H$_2$O$_2$ should be uniformly distributed, preventing localized concentrations from reaching toxic levels. Individual cells in growing planktonic cultures, however, could be in different metabolic states, as proposed for biofilm cells (43). Less active cells could be more susceptible to H$_2$O$_2$ and trigger DNA release. In *S. mutans*, low concentrations of H$_2$O$_2$ inhibit glycolysis (3). In less metabolically active cells, H$_2$O$_2$ could further decrease metabolic activity and trigger eDNA release. Interestingly, the operon controlling cell lysis in *S. aureus*, *cidABC*, encodes a pyruvate oxidase, CidC (33). When excess glucose is available, stationary-phase *S. aureus* CidC$^-$ mutants show higher levels of cell viability than wild-type cells, indicating metabolic control of cell death. Whether the metabolic status of the cell determines the release of DNA in *S. sanguinis* and *S. gordonii* is currently under investigation.

The eDNA mediates the biofilm phenotype of diverse species and contributes to dispersal and colonization of the marine bacterium *Pseudoalteromonas tunicata* (25, 26). In oral streptococci, release of eDNA without obvious lysis of cells could provide an evolutionary advantage enabling gene selection during transformation, as suggested by mathematical modeling (14). For the pioneer oral streptococci, such as *S. sanguinis* and *S. gordonii*, H$_2$O$_2$-producing cells play a crucial role in preventing growth of competing bacteria in a highly competitive biofilm community (21, 23). Metabolically inactive cells are unable to contribute H$_2$O$_2$ and may not be competitors serving on behalf of the population. If these metabolically inactive cells are more susceptible to H$_2$O$_2$ and produce eDNA, however, these cells support the genetic fitness of the population. Cells adhere better in the presence of eDNA, as we show for *S. sanguinis*. Intraspecies aggregation could prevent spatial intrusion of competing bacteria. For aggregated oral streptococci, the overall negative charge of eDNA might also promote colonization of the positively charged enamel surface (47) and early dental plaque formation.

ACKNOWLEDGMENTS

The support from NIH/NIDCR grants R01DE08590 and R01DE 11831 to M.C.H. and 4R00DE018400 to J.K. is gratefully acknowledged.
REFERENCES

