Complete Genome Sequence of the Marine Cellulose- and Xylan-Degrading Bacterium *Glaciecola* sp. Strain 4H-3-7+YE-5

Barbara Klippel,1 Adriane Lochner,1,2 David C. Bruce,3 Karen Walston Davenport,3 Chris Detter,3 Lynne A. Goodwin,4 James Han,4 Shunsheng Han,3 Miriam L. Land,2 Natalia Mikhailova,4 Matt Nolan,4 Len Pennacchio,4 Sam Pitluck,4 Roxanne Tapia,3 Tanja Woyke,4 Sigrid Wiebusch,1 Alexander Basner,1 Fumiyoshi Abe,5 Koki Horikoshi,5 Martin Keller,2 and Garabed Antranikian1*

Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Los Alamos National Laboratory, Los Alamos, New Mexico 87545; DOE Joint Genome Institute, Walnut Creek, California 94598; and Extremobiosphere Research Center (XBR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan

Received 6 June 2011/Accepted 13 June 2011

Glaciecola sp. strain 4H-3-7+YE-5 was isolated from subseafloor sediments at Suruga Bay in Japan and is capable of efficiently hydrolyzing cellulose and xylan. The complete genome sequence of *Glaciecola* sp. 4H-3-7+YE-5 revealed several genes encoding putatively novel glycoside hydrolases, offering a high potential for plant biomass degradation.

Members of the genus *Glaciecola* are Gram-negative, aerobic, and halotolerant bacteria (3) that can be found in various marine habitats (1, 4, 11–15, 17, 18). *Glaciecola* sp. 4H-3-7+YE-5 was isolated from marine subseafloor sediments (31.4 m below the seafloor) collected at a water depth of 755 m at Suruga Bay (Japan) after enrichment on cellulose, xylan, and chitin as sole carbon sources. Until now, little was known about the cellulolytic and hemicellulolytic enzyme systems of *Glaciecola* spp., since only one endo-beta-1,4-xylanase from the cellulolytic and hemicellulolytic enzyme systems of *G.* *mesophilica* has been described (2). In order to gain insight into the complete gene repertoire of *Glaciecola* sp. 4H-3-7+YE-5, the genome was sequenced at the DOE Joint genome Institute (JGI) using a combination of Illumina (2) and 454 technologies (10). To this end, we constructed and sequenced an Illumina GAii shotgun library which generated 50,060,436 reads totaling 3,804 Mb, as well as a 454 Titanium standard library which generated 233,681 reads which generated 50,060,436 reads totaling 3,804 Mb, as well as a 454 Titanium standard library which generated 233,681 reads totaling 164.4 Mb. All general aspects of Illumina construction and sequencing can be found at http://www.jgi.doe.gov/. The initial draft assembly contained 55 contigs in 2 scaffolds. The 454 Titanium standard data and the 454 paired-end 454 libraries with average insert sizes of 10.0 kb, 5.4 kb, and 5.9 kb which generated 272,557 reads totaling 137.8 Mb of 454 draft data which provides 25.6x average genome coverage and 1,774 Mb of Illumina draft data which provides 329x average genome coverage.

The genome of *Glaciecola* sp. 4H-3-7+YE-5 is contained within one large chromosome (5,052,309 bp) and one plasmid (pGLAAG01, 341,282 bp). The complete genome has a total G+C content of 45% and comprises 4,548 predicted protein-encoding ORFs.

This is the first complete genome sequence for a member of the genus *Glaciecola*. In-depth analysis revealed the presence of numerous ORFs encoding carbohydrate-active enzymes, including glycoside hydrolases, glycolytransferases, and carbohydrate esterases, making the organism a promising source of biocatalysts needed for polysaccharide degradation.

Nucleotide sequence accession numbers. The complete chromosome and plasmid sequences of *Glaciecola* sp. 4H-3-7+YE-5 have been deposited in GenBank under accession numbers CP002526 and CP002527.

This study was funded in part by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science under contract DE-AC05-00OR22725. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.
REFERENCES

