Draft Genome of *Streptomyces tsukubaensis* NRRL 18488, the Producer of the Clinically Important Immunosuppressant Tacrolimus (FK506)

Carlos Barreiro, Carlos Prieto, Alberto Sola-Landa, Elena Solera, Miriam Martínez-Castro, Rosario Pérez-Redondo, Carlos García-Estrada, Jesús F. Aparicio, Lorena T. Fernández-Martínez, Javier Santos-Aberturas, Zahra Salehi-Najafabadi, Antonio Rodríguez-García, Andreas Tauch, and Juan F. Martín

INBIOTEC (Instituto de Biotecnología de León), Parque Científico de León, León, Spain; Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, León, Spain; and Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany

The macrocyclic polyketide tacrolimus (FK506) is a potent immunosuppressant that prevents T-cell proliferation produced solely by *Streptomyces* species. We report here the first draft genome sequence of a true FK506 producer, *Streptomyces tsukubaensis* NRRL 18488, the first tacrolimus-producing strain that was isolated and that contains the full tacrolimus biosynthesis gene cluster.

The genome mining showed, in addition to the tacrolimus gene cluster that is fully sequenced and publicly available for the first time, several secondary metabolite gene clusters, including four type I PKS (polypeptide synthase), two type II PKS, one type III PKS, three NRPS (non-ribosomal peptide synthetase), three hybrid PKS/NRPS, eight terpene, six lantibiotic, and three siderophore gene clusters. They were identified and annotated by means of antiSMASH and NRPSp servers (6, 8). This vast arsenal of secondary metabolite genes points to *S. tsukubaensis* as a highly profitable industrial microorganism, even beyond its use in tacrolimus production.

Nucleotide sequence accession numbers. This Whole Genome Shotgun project (chromosome and both plasmids) has been deposited at DDBJ/EMBL/GenBank under the accession numbers AJSZ00000000. The version described in this paper is the first version, AJSZ01000000.

ACKNOWLEDGMENTS

This work was supported by the European Union through an ERA-IB (PIM2010EEI-00677) international cooperation project, Spanish Ministry of Science and Innovation (BIO2006-14853-C02-01, BIO2010-19911), and Junta de Castilla y León (Grupo de Excelencia GR117). C. Barreiro was supported by the European Union program ERA-IB [BioProChemBB project (EIB.08.008)]. C. Prieto and R. Pérez-Redondo were supported by the Juan de la Cierva (JCI-2009-05444) and the Programa de Técnicos de Apoyo (PTA2009-24201) programs of the Ministry of Science and Innovation (Spain), respectively. M. Martínez-Castro and J. Santos-Aberturas received FPU fellowships (AP2005-2727 and AP2005-3644, respectively), and E. Solera received a FPI fellowship (BIO2006-14853-C02-01) from the Ministry of Education and Science of Spain.

We acknowledge the excellent technical support of B. Martin, J. Meirino, and A. Mulero (INBIOTEC).
REFERENCES

Genome Announcement