Draft Genome Sequence of *Staphylococcus saprophyticus* subsp. *saprophyticus* M1-1, Isolated from the Gills of a Korean Rockfish, *Sebastes schlegeli* Hilgendorf, after High Hydrostatic Pressure Processing

Bong-Soo Kim,*, Chong-Tai Kim,*, Bang Heon Park, Sujin Kwon, Yong-Jin Cho, Namsoo Kim, Chul-Jin Kim, Jongsik Chun, Jangyul Kwak, and Jin-Soo Maeng

Chunlab, Inc., Seoul National University, Seoul, Republic of Korea; Functional Materials Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Republic of Korea; School of Biological Sciences and Advanced Institute of Convergence Technology, Seoul National University, Seoul, Republic of Korea; and Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA

A bacterium designated M1-1 was isolated from the gills of a Korean rockfish, *Sebastes schlegeli* Hilgendorf, after high hydrostatic pressure processing. Studies of 16S rRNA phylogeny and comparative genomics demonstrated that the isolate belongs to *Staphylococcus saprophyticus* subsp. *saprophyticus*. Here, we report the draft genome sequence of *S. saprophyticus* subsp. *saprophyticus* M1-1 (KACC 16562).

High hydrostatic pressure (HHP) processing is a method of food treatment with minimal heat exposure that generates better flavor, texture, and nutrition retention than thermal processing (13). Sterilization based on HHP is widely used in the food industry since most microorganisms do not tolerate high-pressure processing (13). Sterilization based on HHP is widely used in the food industry since most microorganisms do not tolerate high-pressure conditions (e.g., >60 MPa, similar to 600 atm) at a temperature of 30°C for 48 h (14). Bacteria that survive such conditions could be a threat to food safety. An HHP-resistant strain designated M1-1 was isolated from the gills of a Korean rockfish after being pressurized at 350 MPa for 25 min using plate count agar (PCA) medium incubated at 20°C. We analyzed the genome sequence and genomic characteristics of this strain for further physiological characterization related to potential food-borne pathogenicity using HHP processing.

The genome sequence was determined by using a combination of Illumina HiSeq 2000 (100-bp paired-end sequencing yielding 7,118,979 reads; >292-fold coverage) and Roche 454 (8-kb insert paired-end sequencing yielding 84,073 reads; >13-fold) sequencing systems. A hybrid assembly was conducted using CLC genomic workbench (CLC Bio, Denmark), GS Assembler 2.3 (Roche Diagnostics, Branford, CT), and CodonCode Aligner (CodonCode Co.). The final draft genome consisted of 58 contigs representing 2,619,956 bases with a G+C content of 33.1%, and 2,490 open reading frames (ORFs), 65 tRNA genes, and 5 rRNA genes were predicted (1, 12). The predicted ORFs were annotated by a homology search against the COG and SEED databases (2, 9). Among the COG categories, R (general function prediction only) categories. Strain M1-1 was deposited in the Korean Agricultural Culture Collection (Suwon, Republic of Korea) under the accession number KACC 16562. Further comparative analyses and experimental works will be carried out to determine the potential pathogenicity of this isolate in light of microbiological food safety.

Nucleotide sequence accession numbers. The draft genome sequence of *S. saprophyticus* subsp. *saprophyticus* M1-1 (KACC 16562) has been deposited in GenBank under the accession number AHKB00000000. The version described in this paper is the first version, AHKB01000000.

ACKNOWLEDGMENTS

This study was supported by a grant from the Korea Food Research Institute (project no. E0115100 and E0111401), Ministry of Knowledge Economy, Republic of Korea.
REFERENCES