Structural Insights into the Regulatory Mechanism of the Response Regulator RocR from *Pseudomonas aeruginosa* in Cyclic Di-GMP Signaling

Ming Wei Chen,a,d Masayo Kotaka,** Clemens Vonrhein,b Gérard Bricogne,b Feng Rao,** Mary Lay Cheng Chuah,a Dmitri Svergun,c Gunter Schneider,d Zhao-Xun Liang,a and Julien Lescara,e

School of Biological Sciences, Nanyang Technological University, Singaporea; Global Phasing, Ltd., Sheraton House, Castle Park, Cambridge, United Kingdomb; European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Hamburg, Germanyc; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Swedend; and A&M-B CNRS UMR 6098, Marseille, Francee

The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from *Pseudomonas aeruginosa* to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.

*First discovered as an allosteric regulator of cellulose synthase in *Glucoacetobacter xylinus*, cyclic-di-GMP (c-di-GMP) mediates a wide variety of bacterial cellular functions mainly associated with the transition between a planktonic and a community-based biofilm lifestyle (7, 17, 35, 36). Dissection of the signaling networks that regulate cellular c-di-GMP levels is expected to reveal the molecular mechanisms underlying biofilm formation, a major contributor to the persistent infections caused by many pathogenic bacteria. Cellular concentrations of c-di-GMP are controlled by two types of enzymes with opposing activities: GGDEF domain proteins with diguanylate cyclase activity and proteins containing either an EAL or a HD-GYP domain, which have c-di-GMP phosphodiesterase (PDE) activity (38–41). While GGDEF domain proteins catalyze the synthesis of c-di-GMP, EAL and HD-GYP domains hydrolyze c-di-GMP to generate either linear 5’-pGpG or GMP. Many bacterial genomes contain multiple copies of genes encoding GGDEF, EAL and HD-GYP domains, an observation consistent with their prominent roles in c-di-GMP signaling. GGDEF, EAL, or HD-GYP domains usually do not function as stand-alone proteins but in association with various regulatory domains that modulate their enzymatic activities in response to external stimuli (4, 14, 29). A wide variety of regulatory domains that sense the environmental signals from the surroundings are found fused to the three enzymatically active domains. Elucidating how the regulatory domains modulate the enzymatic activities of c-di-GMP metabolizing proteins is crucial for a better understanding of the molecular mechanism of c-di-GMP signaling. Recent structural studies on proteins containing GGDEF domain, including the response regulators PleD and WspR, suggested that enzymatic regulation is mainly achieved through the control of their oligomerization state (9, 50). The crystal structure of the protein YkU from *Bacillus subtilis* that contains an enzymatically inactive EAL domain and a putative regulatory PAS domain revealed the β/α barrel structure of the EAL domain (26). Based on site-directed mutagenesis studies, a regulatory mechanism was proposed for the EAL domain-containing protein RocR from *Pseudomonas aeruginosa* (31). In this mechanism, a loop of RocR [named “loop 6” to be consistent with other (α/β)6 barrel proteins, where the corresponding loop acts as a lid for substrate binding and product release] plays an important role for binding the catalytic metal ion and the substrate. More recently, Barends et al. proposed a regulatory mechanism for the BLUF photoreceptor-regulated EAL domain in the BlrP1 protein from *Klebsiella*...
TABLE 1 Data collection statistics

<table>
<thead>
<tr>
<th>Data set (synchrotron)</th>
<th>Native (NSRRC)</th>
<th>SeMet (NSRRC)</th>
<th>K$_2$PtCl$_4$ (SLS PXIII)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>1.00</td>
<td>0.97910</td>
<td>1.07216</td>
</tr>
<tr>
<td>Resolution (Å)*</td>
<td>30–2.50 (2.59–2.50)</td>
<td>30–3.95 (4.09–3.95)</td>
<td>20.00–4.29 (4.35–4.29)</td>
</tr>
<tr>
<td>Space group</td>
<td>P6$_1$/22</td>
<td>P6$_1$/22</td>
<td>P6$_1$/22</td>
</tr>
<tr>
<td>Cell parameters a/b/c (Å)</td>
<td>118.8/118.8/495.1</td>
<td>119.1/119.1/449.5</td>
<td>120.3/120.3/491.1</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>60,479</td>
<td>90/90/120</td>
<td>90/90/120</td>
</tr>
<tr>
<td>Redundancy</td>
<td>11.9 (8.8)</td>
<td>20.1 (19.7)</td>
<td>2.43</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>84.1 (75.0)</td>
<td>99.7 (98.4)</td>
<td>98.5 (97.0)</td>
</tr>
<tr>
<td>R_{merge} *</td>
<td>0.046 (0.495)</td>
<td>0.161 (0.427)</td>
<td>0.094 (0.579)</td>
</tr>
</tbody>
</table>

*Values in parentheses indicate values in the highest resolution shell.

R_{merge} = $\sum I_i - \langle I \rangle / \sum I$, where I_i is the intensity of an individual reflection, and $\langle I \rangle$ is the average intensity of that reflection.

P. aeruginosa, based on the crystal structures of the protein crystallized at different pH values. The mechanism proposed for BhrP1 involves the subtle repositioning of two catalytic metal-ions through conformational changes in the β5-α5 loop (equivalent to loop 6 in RocR), as well as in other structural motifs (2).

The response regulator RocR from the opportunistic pathogen P. aeruginosa contains a N-terminal phosphoreceiver (REC) domain and a C-terminal EAL domain that possesses c-di-GMP specific PDE activity (23, 24, 32). Based on sequence homology and in vivo studies, the REC domain of RocR is predicted to accept a phosphate group from the cognate membrane-bound histidine kinase sensor RocS1. Phosphorylation of RocR putatively modulates the enzymatic activity of its EAL domain and hence of the local level of c-di-GMP. To understand how structural changes originating from the regulatory REC domain of RocR are transmitted to its EAL domain and hence regulate its catalytic activity, we set out to determine the crystal structure of RocR. Although the wild-type RocR could not be crystallized, a 2.5-Å crystal structure of the R286W mutant that exhibits lower catalytic activity was determined. The crystal structure reveals a highly unusual tetrameric arrangement featuring two markedly different conformations for the four subunits of RocR, with only two active sites permitted to its EAL domain and hence regulate its catalytic activity, originating from the regulatory REC domain of RocR are trans-

MATERIALS AND METHODS

Cloning, expression, purification, and crystallization. The cloning, expression, and purification of RocR was described previously (20). In brief, the RocR protein was crystallized at 18°C via the sitting-drop vapor-diffusion method by mixing 1 μl of protein with an equal volume of a solution containing 15 to 20% (wt/vol) PEG 3350 (Hampton Research), 0.1 M Na HEPES (pH 7.5), 0.2 M sodium tartrate, and 5% glycerol. Rod-shaped crystals measuring up to 0.3 mm in length grew over the course of 10 to 14 days. DNA sequencing revealed a mutation introduced by the PCR at position 286 of the amino acid sequence (R286W). The wild-type RocR protein fails to crystallize in the same condition as the RocR mutant, possibly because of a crystal contact established between side chains of Trp286 (subunit A) and Arg379 from a neighboring molecule. C-di-GMP used for cocrystallization or soaking was synthesized enzymatically using a thermophilic DGC protein (30).

Expression, purification, and crystallization of the seleniated RocR protein. The RocR-pET26b plasmid was transformed into E. coli B834 (DE3) (Novagen). Upon reaching an optical density at 600 nm (OD$_{600}$) of 0.4, cells grown at 310 K in Luria-Bertani medium supplemented with 50 μg of kanamycin/ml were harvested by centrifugation and resuspended in selenomethionine base medium (Molecular Dimensions). The washing step was repeated, and the cells were inoculated into 2 liters of prewarmed, prewarmed selenomethionine expression medium (Molecular Dimensions) supplemented with 40 mg of l-selenomethionine/liter and 50 μg of kanamycin/ml. Upon reaching an OD$_{600}$ of 0.6, the culture was cooled to 301 K, and protein expression was induced with IPTG (isopropyl-β-D-thiogalactopyranoside) at a final concentration of 0.1 mM. Protein purification and crystallization was carried out as described for the native protein (20), except that the concentration of PEG 3350 was 10 to 15% (wt/vol).

Enzymatic assay. The phosphodiesterase activity of the wild-type RocR and mutant R286W was assessed by monitoring the formation of the product 5’-pGpG from the hydrolysis of c-di-GMP. The reaction assay was performed by incubating the enzymes (1 μM) and c-di-GMP (20 μM) at various temperatures (25, 40, 50, 60, and 70°C) in 100 mM Tris-HCl (pH 8.0), 20 mM KCl, and 25 mM MgCl$_2$. Reactions were stopped by adding 1/10 volume of 1 M CaCl$_2$, and the progress of c-di-GMP hydrolysis was monitored using the Agilent LC1200 system (mobile phase of 20 mM triethylammonium bicarbonate [pH 7.0] and 5% methanol, at a rate 1 ml/min) with a XDB-C18 column.

X-ray data collection and structure determination. Data collection statistics for crystals of the native protein, for the selenomethionyl protein (SeMet) and the tetrachloroplatinate(II) derivative are given in Table 1. Heavy-metal derivative crystals were prepared using the JBScreen Heavy kit (Jena Biosciences). Native RocR crystals were soaked with 10 mM K$_2$PtCl$_4$ in a modified reservoir solution devoid of sodium tartrate for 10 min. The data sets collected at the Swiss Light Source (Paul Scherrer Institute, Switzerland, beamline PXIII) for the Pt derivative at the LIII edge, and at the National Synchrotron Radiation Research Center (Taiwan) for the selenomethionyl protein and native protein, were processed with the CCP4 program suite (6) or with the program XDS (18). Using the program SHEXLX (43), four Pt sites were found. Electron density maps using either SIRAS or SAD phases calculated with the program SHARP (49) were not interpretable. However, the phases derived from the Pt derivative allowed the identification of 38 Se positions (out of a total of 40 Se), using anomalous differences collected at the selenium absorption edge. Using the program PROFESS (6), a 2-fold NCS could be located that mapped one set of Se positions onto the other. An initial map using SAD phases calculated using program SHARP could thus be averaged using 2-fold NCS and the program DM (6), yielding a partially interpretable map. Further density averaging was performed using a mask covering a
The crystal structure of RocR was determined at a resolution of 2.5 Å using SAD phasing at the Se absorption edge (see Materials and Methods and Tables 1 and 2). The asymmetric unit of the present crystal form contains one tetramer assembled around a single noncrystallographic dyad (Fig. 1B), a finding consistent with the observation that RocR forms tetramers in solution (31, 32). Unexpectedly, the four RocR subunits in the crystal structure adopt two distinct conformations (Fig. 1C and 2). Two subunits adopt a closed conformation (thereafter labeled “A” and “B”), with a root mean square deviation (RMSD) of 1.01 Å with their REC domain situated on top of the (β/α)8 barrel of their EAL domain (Fig. 2A), while the other two subunits adopt an open conformation (“C” and “D”), RMSD = 1.06 Å with their REC domains shifted to the side of their EAL domains (Fig. 2B). Having brought the EAL domains of a closed and an open subunit in coincidence, a 67° rotation and a translation of 29 Å is required to superimpose their REC domains (Fig. 2C). The tetrameric structure of RocR is rather unique because most EAL domain proteins form dimers through a conserved EAL-EAL dimerization interface (2, 26, 46). A dimeric form of RocR was observed in solution for a few RocR mutants with compromised enzymatic activity, suggesting that the RocR tetramer could be formed by two EAL dimers (31, 32). The crystal structure reveals a set of interactions between residues projecting from helices α8 and α10 and from loop 6 that stabilize the EAL-EAL interface between subunits A and C (or their equivalents B and D, by the dyad) (Fig. 1C and see Fig. S1 in the supplemental material). This mode of interaction is also found in the dimeric EAL proteins TBD1265 from *Thiobacillus denitrificans* (46), YkuI from *Bacillus subtilis* (26), and BlrP1 from *Klebsiella pneumoniae* (2) with the same structural elements involved in stabilizing the EAL-EAL interface (see Fig. S1A in the supplemental material).

In contrast to these proteins, the unusual tetrameric structure of RocR arises from additional intra- and intersubunit interactions between EAL and REC domains (see Fig. S1B in the supplemental material). Structure-based alignment of RocR against homologs was generated with ESPript (16). Interface interactions between their respective REC and EAL domains (see Fig. S1B in the supplemental material). This mode of interaction is also found in the dimeric EAL proteins TBD1265 from *Thiobacillus denitrificans* (46), YkuI from *Bacillus subtilis* (26), and BlrP1 from *Klebsiella pneumoniae* (2) with the same structural elements involved in stabilizing the EAL-EAL interface (see Fig. S1A in the supplemental material). However, in contrast to these proteins, the unusual tetrameric structure of RocR arises from additional intra- and intersubunit interactions between EAL and REC domains (see Fig. S1B in the supplemental material). However, in contrast to these proteins, the unusual tetrameric structure of RocR arises from additional intra- and intersubunit interactions between EAL and REC domains (see Fig. S1B in the supplemental material). These most extensive interactions are observed between the open subunits C and D, which lead to a head-to-tail association between their respective REC and EAL domains (see Fig. S1B in the supplemental material). The RECγ and RCγ domains from the closed subunits occupy the central core of the tetramer with the putative phosphorylation sites Asp62 pointing inside the tetramer and largely inaccessible from the solvent. Further stabilization of the tetramer is provided by interactions between RECβ and EALγ (or their equivalent by the dyad RECβ with EALβ), Importantly, the latter interactions give rise to the inhibition of the EAL domains in *trans* as described in details below.

Quaternary structures of wild-type and mutant RocR in solution. The observation of two markedly distinct conformations for the RocR subunits raises the possibility of the existence of a partially or fully open tetrameric structure in solution, with domains RECγ and RCγ swung outward and the catalytic sites of domains EALγ and/or EALβ accessible. A hypothetical fully open conformation of RocR featuring a tetramer with a 222 symmetry is shown in Fig. S2A in the supplemental material. We used the technique of SAXS to address the important question of whether the wild-type and R286W mutant proteins adopt closed structures in solution, similar to the mutant structure revealed by X-ray crystallography. The processed experimental scattering from the wild-type RocR displayed in Fig. 3A (curve 1), and the overall parameters computed from the scattering data clearly indicate that the protein is tetrameric in solution. The experimental radius of gy-
Ration $R_g = 37 \pm 1$ Å and the maximum particle size $D_{max} = 110 \times 10$ Å fully agree with the values computed from the crystallographic model (Fig. 3B). The scattering pattern computed from the closed crystal structure fits the experimental data very well with discrepancy $\chi = 1.08$ (Fig. 3A, curve 2). In contrast, the scattering patterns computed from the putative half-open and open models (Fig. 3A, curves 3 and 4, respectively) display substantial systematic deviations from the experimental data and
yield very high discrepancy values of $\chi = 4.7$ and 11.3, respectively. These findings suggest that, despite the altered catalytic activity exhibited by the R286W mutant, the overall closed conformation observed in the crystal structure is likely to be adopted by both the wild-type RocR and the R286W mutant in solution. Note that the residue Trp286 is from the helix α7 of the EAL domain and situated at the REC$\text{C}$$-EAL\text{D}$ and REC$\text{C}$$-EAL\text{C}$ interfaces that may play a role in the regulatory mechanism, as we will discuss later.

FIG 2 (A and B) Closed (subunits A and B, in cyan, in panel A) and open conformations (subunits C and D, in magenta, in panel B) that constitute the RocR tetramer. Residues from the REC and EAL active sites are represented as yellow sticks. (C) Superposition of the two conformers based on their EAL domains. The residual rotation (angle needed to bring their respective REC domains into coincidence) is indicated.

FIG 3 SAXS analysis of the conformation of RocR in solution. (A) Experimental scattering from the wild-type protein (1, black dots), calculated scattering from the closed tetramer observed in the crystal (2, blue line); calculated scattering from the putative half-open and open RocR tetramers (3 and 4, red and green dashed lines). The logarithm of the scattering intensity is plotted as a function of momentum transfer $s = 4\pi \sin(\theta)/\lambda$, where θ is the scattering angle and λ is the X-ray wavelength. (B) *Ab initio* low-resolution shape reconstructed from the wild-type RocR data (gray mesh) superimposed on the structure of the crystallographic tetramer using SUPCOMB (21).
Previously shown that the D56N RocR mutant exhibits catalytic properties different from the wild-type RocR. Comparative SAXS experiments showed that the scattering patterns from the mutant D56N coincides with the scattering from the wild-type RocR within the experimental error (see Fig. S2B in the supplemental material), indicating that the effect of the D56N mutation on catalytic property is also likely to be exerted through local structural changes rather than large alterations to the overall quaternary structure.

REC domain and interdomain linker. The overall structure of the REC domain of RocR resembles the chemotaxis protein CheY (48). A central sheet of five parallel β-strands is flanked by helices α2’, α3’, and α4’ on one side and α1’ and α5’ on the other, resulting in a (β/α)5 topology (Fig. 4A and see Fig. S3A in the supplemental material). Canonical REC domains contain five essential residues: situated at the end of strand β1’, Glu10 and Asp11 are needed to coordinate a divalent metal ion that is absent here (42), whereas Asp56 at the end of β3’ is the putative residue that receives a phosphate group from the cognate histidine kinase RocS1. Residues Ser83 and Lys111 are predicted to stabilize the phospho-aspartyl adduct and to relay conformational changes through the protein (3). In the current structure, no electron density that could account for a phosphate group is visible next to Asp56 and RocR appears to be nonphosphorylated. Residues projecting from the face contributed by α4’-β5’-α5’ are usually involved in forming specific protein-protein interactions (1, 25, 33). Residue Phe105, located near its center, adopts a single rotamer conformation, with its phenyl ring buried inside the hydrophobic core. Two structural differences (overall RMSD of 2 Å) are visible between the REC domains of the open and closed conformers (Fig. 4A). Local structural remodeling is seen in the β4’-α4’ loop regions and the loop adjacent to Asp56 shows significant differences between the two conformers with a RMSD of 4.38 Å. Previous NMR studies on the prototypical CheY protein revealed that even unphosphorylated REC domains can sample an ensemble of conformations.
motions ranging from inactivated to fully activated (5, 15). Given the decreased accessibility of the phosphorylation site and the surface properties of the α2·β5·α5 face, the conformation adopted by RECn and RECn (closed subunits) might resemble the phosphorylated state.

The interdomain linker (Q130DLPRQVEALP142) is visible in subunit B, where it adopts an extended conformation stabilized by interactions with Ser74, Gly75, and His78 of the RECn domain (see Fig. S3C in the supplemental material). The linker is only partially visible in subunits A, C, and D. The disordered residues from the linker are residues 135 to 138 in subunit A, residues 131 to 140 in subunit C, and residues 130 to 135 in subunit D. The intrinsic flexibility for the linker region is in agreement with the elevated deuteration levels observed by using the method of hydrogen-deuterium (H/D) exchange-coupled mass spectrometry (31).

Phosphodiesterase EAL domain. The EAL domains of RocR adopt a (β/α)n barrel-like fold, similar to other reported EAL domain structures (Fig. 4B and see Fig. S3B in the supplemental material) (2, 26–28, 46). The structure is a variant of the TIM barrel fold with the β1 strand running antiparallel to the other β-strands and also by the presence of additional α-helices α1, α2, and α3 that, together with loop β2-α2, form an additional lobe that protrudes above the barrel, near the putative c-di-GMP binding pocket. The catalytic residues are located at the C-terminal end of the barrel, including residues that form the metal ion-binding site and the evolutionarily conserved residues of loop 6: D298FGAGYSS303 (see Fig. S3B in the supplemental material). A single Mg2+ ion is present in each EAL active site of RocR (Fig. 4C). Together with Asn233, Glu265, and Asp295 and a water molecule, residue Glu75 from the signature EAL motif completes the octahedral metal ion coordination shell. As predicted by our previous model (32), a water molecule is coordinated by the Mg2+ ion and at hydrogen bonding distance from Glu352 and Glu172. In the crystal structures of the enzymatically active BlrP1 and TBD1265, the EAL domains were seen to bind one or two metal ions when high concentration of Mn2+ was used for cocrystallization. For RocR, extensive cocrystallization and soaking experiments with Mg2+, Mn2+, Ca2+, or Zn2+ in the presence or absence c-di-GMP did not produce a RocR structure with two metal ions bound.

c-di-GMP is expected to bind to RocR in a manner similar to BlrP1 and TBD1265, considering that the key residues that bind c-di-GMP are conserved among these three proteins. When we modeled c-di-GMP in the EAL active sites of RocR using the crystal structure of BlrP1 as a guide, EALn and EALn from the closed subunits highly resemble the EAL domain of BlrP1 and appear in the correct conformation for binding c-di-GMP. However, despite repeated attempts, cocrystallization and soaking experiments with c-di-GMP did not yield an enzyme-substrate complex. One structural element known to affect the catalytic properties of EAL domains is loop 6 (2, 31). Interestingly, loop 6 in the four EAL domains adopts two different conformations, as evidenced by the repositioning of residue Asp296 and a large rotation of the phenyl ring of Tyr263 (Fig. 4D). The observations confirm our previous proposal that loop 6 can readily undergo conformational changes and that structural changes in the REC domain could be coupled with conformational changes in loop 6. Another conserved function of loop 6 in EAL domains is to contribute to the dimerization interface along with helix α10 (Fig. 4D). Despite the different conformation adopted by loop 6 in EALn and EALn or EALn and EALn, the loops and the two α10 helices form a nonsymmetric dimer interface that is stabilized by numerous polar interactions (Fig. 1C and see Fig. S1 in the supplemental material).

Inhibition of c-di-GMP binding in EALn domains in trans by REC domain. One of the most striking features of the RocR crystal structure is that the quaternary structure adopted by the tetramer places the REC domains of subunits A and B against the top of the β/α barrel of the EAL domains from the subunits C and D, thus occluding their active site from the solvent (Fig. 1C and 5). The interaction between the EAL and REC domains is mainly mediated through the interaction of helices α4 and α5 from the REC domain. A motif consisting of three nonpolar residues (Pro188, Ile189, and Leu190) located at the end of α4/α5 helix of the RECn or RECn domain is packed into a concave hydrophobic region in the EALn or EALn domain (Fig. 5C). The neighboring Gln192 residue is also seen to form hydrogen bonds with two main chain groups (Pro187 and Ile188) from the EALn or EALn domain. In addition, the residue Tyr350 from the lobe region is tightly sandwiched by several residues that project from helix α5 from the REC domain (Fig. 5D). Together, these interactions lock RECn and RECn at the center of the tetrameric structure. As a result, superimposition of subunits C and D with c-di-GMP bound EAL domains of BlrP1 and TBD1265 reveals insufficient space to accommodate c-di-GMP in either EALn or EALn. It should be noted, however, that this mode of inhibition is only possible for two of the four subunits because the space at the center of the tetrameric RocR can only accommodate up to two REC domains at the same time (Fig. 1C). Importantly, when the RECn and RECn domains are located at the central core of the tetramer, the Asp268 phosphorylation sites are shielded from the solvent and thus inaccessible to the cognate histidine kinase RocS1. Hence, the only Asp268 residues that can be phosphorylated are located in the RECn and RECn domains.

DISCUSSION

Given the large number of two-component signaling systems, response regulators comprise a major family of signaling proteins in prokaryotes with the REC domain fused to a wide variety of DNA-binding or enzymatic domains. RocR represents a subfamily of response regulators that contain a c-di-GMP specific phosphodiesterase domain, with RocR homologues readily identified in various bacterial species (see Fig. S4 in the supplemental material). The crystal structure and SAXS results reported here revealed that RocR adopts a highly unusual quaternary structure in solution with its four subunits adopting two distinct conformations. Surprisingly, two of the four substrate-binding pockets of RocR (C and D) are not accessible to c-di-GMP and thus likely to be constitutively enzymatically inhibited. Inhibition of the enzymatic activity of the subunits C and D is achieved in trans by using the REC domains from the other two subunits to physically block the access of the c-di-GMP substrate. The EAL domains from the subunits A and B are likely to contain the functional active sites with open c-di-GMP binding pockets. A catalytic mechanism utilizing a single Mg2+ or Mn2+ ion was proposed for RocR previously, while a slightly different mechanism based on two metal ions was proposed for the EAL domain proteins BlrP1 and TBD1265 (2, 46). Both mechanisms share a same set of residues critical for catalysis, with the exception of Asp268, which is proposed to bind a second metal ion in the two-metal-ion mechanism but with a minor role in the one-metal-ion mechanism. Residue Glu352 was proposed to be essential in both mechanisms, albeit with different catalytic roles. Despite our repeated studies.
attempts to cocrystallize the protein with c-di-GMP and high concentration of Mg$^{2+}$, Mn$^{2+}$, or Ca$^{2+}$ ion, all of the crystal structures we obtained only contain a single metal ion per protein subunit. Because the second metal ion may only bind in the presence of c-di-GMP, the current structure does not allow us to discriminate between the one- and two-metal mechanisms for RocR.

Sequence comparisons of the REC domain with other canonical REC domains suggest that the key residues for phosphorylation are fully conserved. Hence, the REC domain is likely to be phosphorylated at position Asp56 by the cognate histidine kinase RocS1, and the catalytic activity of the EAL domain could be modulated by the phosphorylation-induced structural changes. Our efforts to prepare phosphorylated forms of RocR using several small phosphate donors were unfortunately futile, as indicated by the negligible effect on enzymatic activity. The inability of the small phosphate donors to phosphorylate RocR may be due to the strong interactions between the REC and EAL domains, similar to some of the response regulators characterized by Barbieri et al. (1). Our repeated effort to crystallize the phosphate mimic BeF$_3$ complexed protein for structural studies was also unsuccessful. Here we deduce a regulatory mechanism based on the current crystal structure and the results of previous biochemical and biophysical studies. Notably, the regulatory mechanism shares some similarity with the mechanism proposed for the blue-light receptor-regulated BlrP1 (2).

Both the crystal structure and the SAXS results for the wild type and R286W and D56N mutants suggest that two REC domains are locked at the center of the tetrameric protein by a large network of specific interactions (Fig. 1 and 5). Even though the D56N mutation significantly alters the catalytic properties of RocR (31), the D56N mutant appears to adopt the same quaternary structure as the wild type and the R286W mutant, according to the SAXS experiment. Thus, given the extensive set of interactions that maintain two REC domains at the center of the RocR tetramer, the regulatory mechanism controlling the activity of the EAL domain is likely to involve local conformational changes rather than large quaternary conformational alterations such as a swinging of the centrally located REC domains to the outside of the molecule, leading to a 222 symmetric RocR tetramer (see Fig. S2A in the supplemental material). In addition, site-directed mutagenesis studies on RocR showed that the enzymatic activity of the EAL domain is very sensitive to conformational changes in a functional loop (loop 6). As revealed by the hydrogen/deuterium (H/D) ex-

FIG 5 Inhibition of c-di-GMP binding in trans by REC domains. (A) In the observed crystal structure, binding of c-di-GMP to the open RocR conformer (subunit C, magenta) is prevented due to physical occlusion by the REC domain of a closed conformer (subunit B, blue). (B) The in trans REC-EAL interaction is mediated mainly through the interactions between hydrophobic residues preceding REC helix $\alpha 4'$ and an EAL hydrophobic pocket (C) and interactions between Y195 of the EAL lobe and residues projecting from helix $\alpha 5'$ (D).
FIG 6 Proposed regulatory mechanism. Only the relevant domains from one half of the symmetric protein are shown for clarity. Phosphorylation of Asp⁵⁶ of the REC_{CD} domain induces local conformational changes in the REC domains (see text). These structural changes are transmitted to the adjacent EAL domain through the direct contact that exist between the terminal residues of helix α^{5′} (Ile²⁹⁶ and Leu²⁹⁷, depicted as blue spheres) and residues Phe³¹⁰ and Pro³¹¹ (depicted as yellow spheres) situated immediately downstream of loop 6 of EAL_C. The signal is further transmitted down to the active site of EAL_{DA/B} through loop 6 that constitute EAL_{DA/C}–EAL_{DA/B} dimer interface. Based on the H/D exchange-coupled mass spectrometry results reported previously (31), the peptides of RocR that exhibit significant conformational changes upon D56N mutation are colored in blue (REC) and red (EAL), respectively. W286 (green spheres) is located at the REC-EAL interface and may reduce the R286W mutant’s activity by disrupting the signal propagation. See also Fig. S6 in the supplemental material. (Inset) Schematic view of the signal transmission pathway across the RocR tetramer. The same color code is adopted.

change experiments with the wild type and D56N mutant, the D56N mutation causes significant structural changes in loop 6 in correlation with changes in the kinetic parameters <i>k</i>_{cat} and <i>K_m</i>. Based on all of the information, we propose a regulatory mechanism, as depicted in Fig. 6. For clarity, only the relevant domains of one half of the symmetric protein are shown and discussed here. Phosphorylation of the accessible Asp⁵⁶ in REC_{CD} (or REC_C) triggers significant conformational changes within the REC domain. Based on the H/D exchange results and structural studies on other activated CheY-like proteins (10, 47), the greatest structural changes occur in the region that encompasses the α⁴ and α^{5′} helices. These structural changes are propagated to the neighboring EAL_C domain through the direct contact between the terminal residues Ile²⁹⁶ and Leu²⁹⁷ of the α^{5′} helix of REC_C (Fig. 5C) and residues Phe³¹⁰ and Pro³¹¹ that follow loop 6 (amino acids 295 to 305) of the EAL_C domain (Fig. 6). Because loop 6 (EAL_C) forms multiple interactions with the adjacent loop 6 (EAL_A) at the EAL/EAL dimer interface, the structural changes incurred by one loop are likely to be transmitted to the other. Conformational changes in loop 6 would affect the catalytic efficiency of the EAL domains by modulating binding of the c-di-GMP substrate or of the Mg²⁺ ion or through desolvation of the active site required for effective catalysis. The signal transmission pathway (Fig. 6), which is initiated at the Asp⁵⁶ position of the REC_{CD} domain and ends at the Mg²⁺ ion in the EAL_A domain, spans an approximate distance of 48 Å and traverses the REC_C/EAL_C and EAL_C/EAL_A interfaces.

In addition to the crystal structure, several lines of evidence support the proposed regulatory mechanism and the central role of the highly conserved loop 6 (D²⁹⁶FGAGYSS³⁰²) in the mechanism. First, alteration of the conserved residues in the loop 6 region has a profound impact on catalysis. For example, the F297A mutation resulted in a 33-fold decrease in <i>k</i>_{cat} and a 5-fold decrease in <i>K_m</i> whereas the S302A mutation gave rise to strong substrate inhibition. Replacement of residue Glu²⁸⁸ by Gln stabilizes the conformation of loop 6 and led to a reduced <i>k</i>_{cat} by 447-fold and <i>K_m</i> by 10-fold (2). These experimental observations suggest that perturbations in the conformation of loop 6 are a very effective way to regulate the catalytic efficiency of the EAL domain. Second, our previous H/D exchange studies are consistent with the proposed structural changes. Comparison of the H/D exchange patterns between RocR and the D56N mutant (the phosphorylation site) suggested that the replacement of Asp⁵⁶ by Asn induces significant structural changes in both REC and EAL domains (31). The most significant changes occur in the regions that encompass the α^{4′} and α^{5′} helices of the REC domain, loop 6, and part of the long helix α10 at the dimer interface. Thus, the regions undergoing structural or conformational changes as determined by H/D exchange experiments, coincide with the proposed signal propagation pathway (Fig. 6). Third, a signal transmission pathway that also involves loop 6 and other structural motifs was proposed for the EAL domain-containing protein BlrP1 (2). A superposition of the BlrP1 structure with the RocR structure shows that the regulatory BLUF and REC domains occupy similar positions close to the bottom of the α/β barrel near the α5/α7 helices (see Fig. S5 in the supplemental material), suggesting a conserved mode for signal transmission between the two proteins. Nonetheless, while the regulatory domain of BlrP1 only regulates the activity of the neighboring EAL domain, RocR needs to further propagate the structural changes to the second EAL domain across the EAL–EAL interface (Fig. 6 and see Fig. S6 in the supplemental material). And lastly, the regulatory mechanism can explain why the R286W mutant exhibits altered enzymatic activity. The Trp²⁸⁶ residue in the wild-type protein could play an important role in propagating the conformational change originated from the D56 site. The mutation R286W not only disrupts the pathway but also exerts an effect on the active site of the EAL domain through allosteric regulation, which accounts for the altered enzymatic activity of the R286W mutant.

Many bacterial genomes encode large numbers of EAL domains that are putatively regulated by a wide range of sensory domains for perceiving environmental signals. It is not known whether the EAL domain proteins share similar regulatory mechanisms. The crystal structures of BlrP1 and RocR point to an over-conservation of the regulatory domains for perceiving environmental signals. It is not known whether the EAL domain proteins share similar regulatory mechanisms. The crystal structures of BlrP1 and RocR point to an overall conservation of the mechanism controlling the enzymatic activity of their EAL domain despite the use of different regulatory domains and variation of input signals. In essence, this exquisite regulatory mechanism involves the structural remodeling of the functional loop at the EAL domain dimer interface triggered by a signal originating from a strategically positioned regulatory domain located near the α5/α7 helices of the EAL domain. The structural changes in the loop and its vicinity region modulate the
catalytic efficiency of the PDE domain by influencing the binding of the metal ion and c-di-GMP. It will be of great interest to see whether this mechanism is generally preserved in other EAL domain proteins, including the prevalent proteins that contain the GGDEF-EAL didomain unit.

ACKNOWLEDGMENTS

We thank the scientists and staff on the BL13B1 (National Synchrotron Radiation Research Center, Taiwan), PXII (Paul Scherrer Institut, Switzerland), and X33 (DESY, Hamburg, Germany) beamlines for their expert assistance. The laboratory of J.L. was supported by a CRP-2008 grant, a BMRC funded laboratory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. PLoS Biol. 8:e1000588. doi:10.1371/journal.pbio.1000588.

