Staphylococcus sp. strain OJ82 was isolated from a Korean traditional fermented squid seafood, ojingeo-jeotgal. Staphylococcus sp. OJ82 could grow and show extracellular protease and β-galactosidase activities in the presence of extremely high saline (20%). Here, we report the genome sequence of Staphylococcus sp. OJ82.

Fermented seaweeds are an important constituent of the human diet in many countries. Seafood fermentation can be driven by indigenous microorganisms in the raw materials (4). Despite the important role of microorganisms in seafood fermentation, the diversity, abundance, and roles of microorganisms in fermented seaweeds have been poorly explored (2). Staphylococcus sp. strain OJ82 was isolated from a Korean traditional fermented squid seafood, ojingeo-jeotgal. Salty fermented squid seafood can be prepared with small squid and many different ingredients (salt, fish sauce, hot pepper flakes, green chili pepper, etc.). Among many culturable strains isolated from salty fermented squid seafood, Staphylococcus species were dominant bacteria (data not shown). Staphylococcus sp. OJ82 maintains its growth in the presence of high salt stress and produces the enzymes β-galactosidase and protease (unpublished data). We sequenced the genome of Staphylococcus sp. OJ82 to provide more insight into its genetics and physiology under high-salt conditions.

The Staphylococcus sp. OJ82 genome was sequenced using a combination of the 454 GS FLX Titanium system (Roche Diagnostics, Branford, CT) with an 8-kb paired-end library (288,808 reads) and an Illumina GA Ix genome analyzer (San Diego, CA) with a 100-bp paired-end library (44,078,567 reads). The 454 GS FLX and Illumina reads were assembled using GS Assembler 2.6 (Roche Diagnostics, Branford, CT) and CLC Genomics Workbench 5.0 (CLC bio, Denmark). The assembled sequences resulted in 11 scaffolds that consisted of 28 contigs with 1,550.57-fold coverage. Genome annotation was achieved using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Automatic Annotation Pipeline (5).

The Staphylococcus sp. OJ82 genome contains 2,899,115 bp with a G + C content of 32.86%, 2,841 coding sequences (CDS), 58 RNA genes, and 10 rRNA genes. No plasmids are present in the sequenced strain. A total of 2,305 CDS were classified using the Cluster of Orthologous Groups (COG) database (6). The most abundant group is involved in amino acid metabolism and transport (COG category E [7.39%]), with the next-most-abundant group involved in carbohydrate transport and metabolism (COG category G [6.80%]). Several genes known to be important for survival under saline stress were found. The strain contains 10 Na⁺ cotransporter genes, which are homologues of the Na⁺ symporter genes of Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305, Lentibacillus sp. strain Grbi, Staphylococcus pseudintermedius HKU10-03, and Macroccocus caseolyticus JCSC5402, and 6 Na⁺/H⁺ antiporter genes, which are homologues of the Na⁺/H⁺ antiporter genes of Staphylococcus carnosus subsp. carnosus TM300 and Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305.

Staphylococcus species have been isolated from various environments, such as human skin (7), crude oil-contaminated soil (1), and fermented food (3), which indicates that each Staphylococcus species has a unique metabolic capability in its ecological niche. Staphylococcus species have been isolated from many fermented seaweeds, which suggested that they might play important roles in seafood fermentation. The availability of the genome sequence of Staphylococcus sp. OJ82 will provide more insight into the mechanism of halotolerance under high-salt conditions such as seafood fermentation.

Nucleotide sequence accession numbers. The nucleotide sequence of the 16S rRNA from Staphylococcus sp. OJ82 has been deposited in GenBank under accession number JX270830. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number ALPU00000000. The version described in this paper is the first version, ALPU01000000.

ACKNOWLEDGMENTS
This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ008208032012), Rural Development Administration, Republic of Korea. W. Park was supported by the LG Yonam Foundation, Seoul, South Korea.

REFERENCES