Genome Sequence of *Weissella confusa* LBAE C39-2, Isolated from a Wheat Sourdough

Myriam Amari,a Sandrine Laguerre,b,c,d Marlène Vuillemin,b,c,d Hervé Robert,a Valentin Loux,a Christophe Klopp,f Sandrine Moret,b,c,d Bruno Gabriel,a Magali Remaud-Siméon,b,c,d Valérie Gabriel,a Claire Moullis,b,c,d and Catherine Fontagné-Faucher*a

Université de Toulouse, Laboratoire de Biotecnologies Agroalimentaire et Environnementale, EA 4565, Institut Universitaire de Technologie, Université Paul Sabatier, Auch, France; Université de Toulouse, INSA, UPS, INP, LBBP, Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5004, Toulouse, France; INRA, UR1077 Mathématique, Informatique et Génome, Jouy-en-Josas, France; and Plateforme Bio-informatique Toulouse Genopole, UBIAN, INRA, Castanet-Tolosan, France.

Weissella confusa is a rod-shaped heterofermentative lactic acid bacterium from the family of Leuconostocaceae. Here we report the draft genome sequence of the strain *W. confusa* LBAE C39-2 isolated from a traditional French wheat sourdough.

The genus *Weissella* is phylogenetically related to *Leuconostoc* and *Oenococcus* and arose from the reclassification of *Leuconostoc paramesenteroides* and some related atypical heterofermentative lactobacilli (3). *Weissella confusa* (formerly *Lactobacillus confusus*) has been isolated from a variety of sources: sugar cane, carrot juice, milk, fermented foods and beverages, and human and animal samples (2, 3, 6, 9). It is more particularly found in many fermented cereals and vegetables (2, 3, 6). Some metabolic traits other than lactic acid fermentation, such as exopolysaccharide production from sucrose (4, 10, 13) and antifungal activity (14), have been reported, highlighting that *W. confusa* could be attractive for diverse biotechnological applications. For instance, a *W. confusa* strain was found promising for efficient in situ production of dextrans and isomaltooligosaccharides in sourdoughs without strong acidification (7). *W. confusa* is also present in the normal microflora of human intestines (15) and has been described as a potential probiotic species (1, 11).

*W. confusa* strain LBAE C39-2 was isolated from a traditional wheat sourdough (12). The genomic DNA was extracted from the cultured bacteria (MRS Broth, 30°C) by using a DNeasy blood and tissue kit (Qiagen). The genome of *W. confusa* C39-2 was sequenced with a whole-genome shotgun strategy using Roche 454 GS (FLX titanium) pyrosequencing. A total of 86,967 filtered reads corresponding to ~33 Mb and ~14-fold coverage of the genome were obtained. Assembly performed using Newbler v.2.5 software generated 71 contigs (>100 bp in size) with 57 contigs larger than 1,000 bp. Genome annotation was performed using the AGMIAL annotation platform (5). The draft genome includes 2,284,024 bp with an overall G+C content of 45%. It includes 2,156 protein-coding genes, of which 72% (1,559) were annotated with known proteins with biological function and 28% (597) were annotated as hypothetical proteins. It also includes six copies of the 5S rRNA, one single copy of the large-subunit rRNA, one single copy of the small-subunit RNA-encoding genes and 73 tRNA-encoding genes. Most protein-coding genes were related to metabolic traits. Transposable elements and phage-related genes were also detected.

This is the first genome sequence provided for the *W. confusa* species. Whereas phylogenetic analyses showed that this species is closely related to *Weissella cibaria* (2), BLAST analyses revealed that fewer than 30% of the *W. confusa* LBAE C39-2 contig sequences matched the genome of *W. cibaria* KACC11862 (8) with more than 80% identity and an e-value lower than 10−4.

Nucleotide sequence accession number. The draft genome sequence of *W. confusa* LBAE C39-2 is available in the EMBL nucleotide sequence database under accession number CAGH00000000.

ACKNOWLEDGMENTS

This work was supported by a grant from the Region Midi-Pyrénées and funding from Toulouse University.

We thank the genomic platform of Toulouse Midi-Pyrénées Genopole for pyrosequencing.

REFERENCES


Received 22 December 2011 Accepted 9 January 2012
Address correspondence to Catherine Fontagné-Faucher, cathy.faucher@utlthree.fr.
MA and SL contributed equally to this article.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JB.06788-11


