cell, is able to prevent multiplication of T5. This blockage must occur later on in the latent period since adsorption of phage and the first stage of infection takes place. The presence of P2 prophage in strains of *E. coli*, however, does not inhibit the multiplication of T5 or all of the T5xPB hybrids tested although all except one were blocked in Sh(P2). The inhibition is clearly a function of two factors—the phage and the carrier cell. Inhibition of PB multiplication does not occur, and it is evident that this difference between the two phages is a reflection of some very basic property of the phages and may serve as a useful genetic marker.

PROPERTIES OF AN ORGANISM RESEMBLING NOGUCHIA GRANULOSIS

WILLIAM E. CLAPPER AND JOHN T. PARKER

Department of Bacteriology, Lovelace Foundation, and Department of Ophthalmology, Lovelace Clinic, Albuquerque, New Mexico

Received for publication December 27, 1954

Noguchi (J. Exptl. Med., 48, Supp. 2, 1, 1928) described an organism isolated from four cases of trachoma in Indians living in Albuquerque, New Mexico. This organism was capable of producing a chronic granular conjunctivitis in monkeys. It was a small gram negative bacillus which he called *Bacterium granulosis*. *Bergey's Manual* (Breed et al., 1948) gives a more complete description under the name *Noguchia granulosis*.

A large gram negative bacillus was cultured from the eyes of a 22 year old male, who came to the Lovelace Clinic for treatment of a long-standing ulcerative blepharitis. The organism grew well aerobically on trypticase soy blood agar, but poorly anaerobically. Growth was good in CO₂ but no better than in air. There was no growth on desoxycholate agar. Growth was better at room temperature than at 37 C. It was actively motile in brain heart infusion broth at 15–20 C, but showed very little motility at 37 C. Glucose, maltose, sucrose, lactose, mannitol, and dextrin were fermented rapidly, and rhamnose slowly. No fermentation of salicin, sorbose, or sorbitol was observed. All of the IMVIC reactions were negative, urea was not hydrolyzed, gelatin was not liquefied, and no H₂S was produced. It was catalase positive and did not show satellite formation with a staphylococcus. A heavy suspension inoculated intraperitoneally was not lethal to white mice, and subcutaneous injection produced no change in a guinea pig. Disk sensitivity tests showed the bacillus to be sensitive to tetracycline, chlorotetracycline, oxytetracycline, and neomycin, but resistant to penicillin, streptomycin, chloromycetin, and erythromycin. Tube dilution tests showed the organism to be sensitive to 0.78 μg of chlorotetracycline, 1.56 μg of oxytetracycline, and 1.56 μg of tetracycline. Treatment with chlorotetracycline resulted in temporary improvement, but symptoms recurred when it was stopped. Active immunization with a vaccine made from pure cultures produced lasting clinical improvement.

As we have seen no further reports concerning the genus *Noguchia* since that of Olitsky et al. (J. Exptl. Med., 60, 375, 1934), it seemed of interest to describe this organism which appears to be nearly identical to that described in *Bergey's Manual*, and to report its sensitivity and the outcome of treatment with the indicated antibiotic. A culture of this organism is being deposited in the American Type Culture Collection.