SUCCINOXIDASE SYSTEM OF PASTEURELLA TULARENSIS

J. H. FELLMAN and R. C. MILLS

Department of Biochemistry, University of Kansas, Lawrence, Kansas

Received for publication October 16, 1959

The succinoxidase system of Pasteurella tularensis has been studied as part of a general investigation on the metabolism of this organism. This paper describes some of the properties of the intact system; data on the components of the succinic dehydrogenase system are presented elsewhere (Wadkins and Mills, unpublished data).

EXPERIMENTAL METHODS

Preparation of washed particles. Cell-free extracts of highly virulent P. tularensis strain Sm were prepared by sonic disintegration of cells as described by Rendina and Mills (1957). Twenty ml of undialyzed centrifuged (3000 × G for 30 min) sonic extract, containing 3.8 to 4.2 mg N per ml, were centrifuged for 3 hr at 105,000 × G at 5 C. The supernatant was decanted and the reddish precipitate was suspended in 20 ml 0.1 m potassium phosphate buffer, pH 7.5, and recentrifuged 1 hr at 2000 × G. The precipitate, after an additional washing with phosphate buffer, was called “washed particles.”

Alcohol fractionation of sonic extract. Fifty ml of sonic extract, after dialysis overnight against 1 L distilled water at 4 C, were adjusted to pH 5.4 with acetate buffer. The precipitate was separated by centrifuging at 3000 × G, resuspended in distilled water, and the pH adjusted to 6.5 with bicarbonate buffer. Ethanol, 95 per cent, was added slowly to a final concentration of 20 per cent, while maintaining the temperature at or below −2 C. The precipitate was centrifuged off at 3000 × G at −5 C, taken up in water, and lyophilized. This material contained all of the cytochrome b as well as the succinoxidase activity of the sonic extract.

Oxygen consumption was measured by conventional techniques in the Warburg respirometer, with air as gas phase. Final reaction volume was 3.0 ml, at pH 7.4. Succinoxidase activity was also determined by measuring accumulation of fumarate as indicated by increase in optical density at 240 mμ (Racker, 1950).

Ethyl hydrogen peroxide was prepared by the procedure detailed by Stern (1936).

RESULTS

Whole cells and sonic extracts of P. tularensis possess an active succinoxidase system. After 20 ml of sonic extract were centrifuged 4 hr at 25,000 × G at 5 C, the activity was found almost entirely in particulate fractions. Heavy particles (a pink precipitate on the bottom of the tube) had a QO2 somewhat higher than the original sonic extract (table 1). Just above the precipitate was a heavy cherry-red solution which was overlaid by clear yellowish supernatant. These solutions were decanted together and centrifuged for 7 hr as before. The red solution, apparently containing small particles, was separated from the yellow supernatant, and was found to have a high succinoxidase activity. The yellow supernatant was only slightly active. When sonic extract was centrifuged at 144,000 × G, similar to the preparation of “washed particles” under Experimental Methods, most of the succinoxidase activity was in the sediment.

The difference spectrum of a sonic extract of P. tularensis was determined in the spectrophotometer, using a few crystals of sodium hydroxysulfite to reduce the cytochromes. The peaks indicated the presence of a b-type cytochrome (429, 530, 559 mμ), cytochrome a (628 mμ), and a suggestion of cytochrome a1 (a shoulder at 590 mμ). There was no evidence for the presence of a c-type cytochrome, or of a2. Similar but more sharply defined spectra were obtained with deoxycholate-treated (2 per cent) sonic extract, and with a small particle preparation (Wadkins and Mills, unpublished data) (figure 1). Examination of sonic extracts at the temperature of liquid air with a hand spectrocope did not reveal any cytochrome c bands.

Using the method of Keilin (1926), no cytochrome c was obtained by extraction of 10 g wet weight of P. tularensis. A parallel experiment

1 Present address: Division of Neurology, University of Oregon Medical School, Portland 1, Oregon.
with baker's yeast gave large amounts of cytochrome c.

The addition of horse heart cytochrome c (1 \times 10^{-4} \text{ M} final concentration) had no effect on the succinoxidase activity of a sonic extract. However, added cytochrome c was slowly reduced (measured at 550 m\mu) by sonic extract in the presence of succinate; 10^{-3} \text{ M} cyanide inhibited this reduction after 5 min contact with the enzyme.

Both whole cells and sonic extracts were devoid of cytochrome oxidase activity, as determined by reoxidation of reduced cytochrome c (Cooperstein and Lazarow, 1951), and by oxidation of p-phenylenediamine or Nadi reagent. In control experiments dilute rat liver homogenate was very active in both assays.

TABLE 1

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Cytochrome b</th>
<th>(Q_02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sonic extract</td>
<td>+</td>
<td>139</td>
</tr>
<tr>
<td>Yellow supernatant</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Red supernatant</td>
<td>++++</td>
<td>544</td>
</tr>
<tr>
<td>Precipitate</td>
<td>++</td>
<td>238</td>
</tr>
</tbody>
</table>

Cytochrome b estimated with hand spectroscope. \(Q_02\) is \(\mu\text{LO}_2/\text{mg} \text{ N/hr. Each vessel contained}100 \text{ \mu moles succinate, }150 \text{ \mu moles potassium phosphate buffer, and the material to be assayed.}

The relative concentrations of cytochrome b in the centrifugal fractions of the sonic extract, as estimated with a hand spectroscope after reduction with hydrosulfite, correlated well with the succinoxidase activity (table 1).

The addition of succinate (0.05 M final concentration) to sonic extract in an evacuated Thunberg tube caused the immediate appearance of the 560 m\mu band of reduced cytochrome b as seen with the hand spectroscope. Upon admission of air to the tube, the band rapidly faded, but did not disappear, indicating partial reoxidation of the cytochrome b.

The concentration of the cytochrome b in the sonic extract as determined by optical density change at 560 m\mu upon reduction with hydrosulfite, using the value 22 cm\^{-1}\text{mm}^{-1} for the change of molecular extinction coefficient (Chance, 1957), was about \(4 \times 10^{-6} \text{ M, or } 1 \times 10^{-3} \text{ \mu moles per mg N.}

The cytochrome b was thermolabile, as indicated by nonreducibility with succinate or hydrosulfite after incubation for 20 min at 80 C. Heating a tube containing enzymatically reduced cytochromes b and c for 40 min at 75 C resulted in disappearance of the reduced cytochrome b, whereas the reduced cytochrome c was unchanged.

Sonic extracts reduced methylene blue in an evacuated Thunberg tube in the presence of succinate; upon tipping in fumarate the methylene

\[\text{Figure 1. Difference spectrum of small particle preparation of Pasteurella tularensis}\]
blue was reoxidized, as would be expected. The reduced cytochrome b band, which had been produced in sonic extract by the addition of succinate, disappeared completely and rapidly after addition of methylene blue. Methylene blue, \(1.8 \times 10^{-3}\) M, had little effect on oxygen uptake by sonic extract with succinate, and did not reverse the inhibition of oxygen uptake produced by cyanide (\(1 \times 10^{-3}\) M). Since the methylene blue can reoxidize the cytochrome b, it appears that the rate of reoxidation of cytochrome b is not rate limiting in the succinoxidase system.

Properties of the succinoxidase. The effect of pH on the succinoxidase activity is shown in figure 2. At pH 7.3, the maximal rate of oxygen uptake occurred.

When the partially purified succinoxidase preparation obtained by alcohol fractionation was dialyzed 24 hr against distilled water, there was complete loss of succinic dehydrogenase and succinoxidase activity. Known coenzymes such as di- and triphosphopyridine nucleotide, riboflavin, riboflavin phosphate, and flavin adenine dinucleotide did not restore activity, but in the presence of \(3.3 \times 10^{-3}\) M cysteine the activity was 85 per cent that of the undialyzed preparation. Dialysis had no effect on the activity of the original sonic extract.

A component of mammalian succinoxidase system is inhibited by reducing agents such as cysteine, ascorbic acid, glutathione, and British Anti-Lewisite (Slater, 1949), and by antimycin A (Potter and Reif, 1952). Cysteine and ascorbic acid (table 2) and antimycin A (5 \(\mu g\) per ml) all had no effect on the succinoxidase activity of sonic extracts of *P. tularensis*.

Attempts to demonstrate hydrogen peroxide production during the oxidation of succinic acid by sonic extracts or by washed particles were unsuccessful. Since the organism and sonic extracts contain high catalase activity, the peroxidative oxidation of ethyl alcohol (Kelin and Hartree, 1945) was attempted. The presence of \(3.3 \times 10^{-2}\) M ethyl alcohol had no effect on oxygen uptake, and no acetaldehyde could be detected in the medium.

A specific catalase inhibitor, ethyl hydrogen peroxide, caused marked inhibition of oxygen uptake (85 per cent at \(7 \times 10^{-2}\) M, 30 per cent at \(7 \times 10^{-3}\) M). However, the ethyl hydrogen peroxide was apparently acting as a direct oxidant of the system. When added to a succinate-reduced system in an evacuated Thunberg tube, it caused complete disappearance of the reduced cytochrome b band. That peroxide could reoxidize the oxidase system enzymatically was indicated by the effect of \(1 \times 10^{-3}\) M hydrogen peroxide on the reduction of 2,6-dichlorophenolindophenol by washed particles (figure 3). The marked inhibition of dye reduction by the peroxide was prevented by the presence of \(3.3 \times 10^{-4}\) M or \(3.3 \times 10^{-5}\) M cyanide, and partially reversed by the addition of cyanide after reduction of the

Table 2

<table>
<thead>
<tr>
<th>Additions</th>
<th>Oxygen Uptake ((\mu L/30) min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td>Succinate</td>
<td>187</td>
</tr>
<tr>
<td>Succinate + cysteine</td>
<td>186</td>
</tr>
<tr>
<td>Succinate + ascorbate</td>
<td>188</td>
</tr>
<tr>
<td>Cysteine</td>
<td>19</td>
</tr>
<tr>
<td>Ascorbate</td>
<td>16</td>
</tr>
</tbody>
</table>

Each vessel contained 0.5 ml sonic extract and 150 \(\mu g\) potassium phosphate buffer. Final concentrations of additions: succinate, \(1 \times 10^{-3}\) M; cysteine, \(3.3 \times 10^{-3}\) M; ascorbate, \(3.3 \times 10^{-3}\) M.
Figure 3. Effect of H_2O_2 and NaCN on reduction of 2,6-dichlorophenolindophenol. Each tube contained 0.1 ml sonic extract (0.4 mg N), 2.7×10^{-5} m 2,6-dichlorophenolindophenol, 0.01 m sodium succinate (except for endogenous tube), and 0.08 m potassium phosphate, pH 7.4. Additions: $\times--\times$ none; $\times---\times$, 5×10^{-4} m NaCN; $\circ--\circ$ 1×10^{-3} m H_2O_2; $\triangle--\triangle$ H_2O_2 + NaCN; $\bullet--\bullet$ H_2O_2, with NaCN added at arrow; 26 C; enzyme added at zero time.

dye had stopped completely in the presence of the peroxide.

Cyanide (1×10^{-3} m) and sulfide (2×10^{-3} m) inhibited markedly the succinoxidase activity as followed by oxygen uptake (table 3). Most of the oxygen consumption in the presence of cyanide was the result of a delay of onset of inhibition after mixing the cyanide with the washed particles. This lag is illustrated in figure 4, where fumarate production was measured in the presence of a very small amount of sonic extract. Added cysteine had little effect on the inhibition by cyanide, but completely reversed the inhibition caused by sulfide (table 3).

These effects were observed also in the growth of the organisms in the casein hydrolyzate-decamin broth, which contained high levels of cysteine (1.3×10^{-2} m). During growth large amounts of hydrogen sulfide are produced from the cysteine, with no apparent effect on the growth. Added sodium sulfide (2×10^{-2} m) had no effect on the rate of growth, but 2×10^{-4} m cyanide completely inhibited growth. Sodium azide at 1.5×10^{-4} m caused 20 per cent in-

<table>
<thead>
<tr>
<th>Additions to Flasks</th>
<th>Oxygen Uptake μL/30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Succinate</td>
<td>201</td>
</tr>
<tr>
<td>Succinate + sulfide</td>
<td>78</td>
</tr>
<tr>
<td>Succinate + sulfide+cysteine</td>
<td>212</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0</td>
</tr>
<tr>
<td>Cysteine + sulfide</td>
<td>22</td>
</tr>
<tr>
<td>Succinate + cyanide</td>
<td>104</td>
</tr>
<tr>
<td>Succinate + cyanide+cysteine</td>
<td>129</td>
</tr>
<tr>
<td>Succinate + cysteine</td>
<td>212</td>
</tr>
</tbody>
</table>

Each flask contained 0.5 ml washed particle suspension plus 150 μmols potassium phosphate buffer. Final concentrations of additions were: succinate, 7×10^{-3} m; cysteine, 3.3×10^{-3} m; sodium sulfide, 2×10^{-3} m; sodium cyanide 1×10^{-4} m.

Table 3: Effects of sulfide and cyanide on succinoxidase

Table 3 shows the effects of sulfide and cyanide on succinoxidase.

Additions to Flasks | Oxygen Uptake μL/30 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Succinate</td>
<td>201</td>
</tr>
<tr>
<td>Succinate + sulfide</td>
<td>78</td>
</tr>
<tr>
<td>Succinate + sulfide+cysteine</td>
<td>212</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0</td>
</tr>
<tr>
<td>Cysteine + sulfide</td>
<td>22</td>
</tr>
<tr>
<td>Succinate + cyanide</td>
<td>104</td>
</tr>
<tr>
<td>Succinate + cyanide+cysteine</td>
<td>129</td>
</tr>
<tr>
<td>Succinate + cysteine</td>
<td>212</td>
</tr>
</tbody>
</table>

It was of some interest to determine whether the presence of sulfide in the growth medium
Figure 4. Effect of cyanide on rate of fumarate production by sonic extract. Final concentrations in cuvettes: succinate, 3.3×10^{-2} M; cyanide, 5×10^{-3} M, potassium phosphate, 6.7×10^{-2} M; 0.001 ml sonic extract. Total volume 3.0 ml. Endogenous had no succinate or cyanide. Enzyme added at zero time.

would have any effect on the cytochrome composition of a microorganism. *P. tularensis* is difficult to grow in the absence of added cysteine and therefore in the absence of sulfide, but *Bacillus subtilis* grows well on nutrient agar. After 24 hr growth of *B. subtilis* on nutrient agar with and without 0.1 per cent added sodium sulfide, the cells were washed once, and resuspended in saline. After addition of hydrosulfite the reduced spectra were examined with a hand spectroscope. The cells grown without added sulfide showed the typical 3 bands at 530, 550-562, and 600-604 m\(\mu\). The organisms grown in the presence of sulfide showed only a much fainter single broad band at 551-559 m\(\mu\), with no visible band at 595-604 m\(\mu\). While the organisms grown in the absence of sulfide contained cytochrome oxidase activity (Nadi reagent), those grown with added sulfide had none.

DISCUSSION

Succinoxidase systems in a number of microorganisms have been studied with a varying magnitude of enterprise; wherever information on intracellular distribution is available the activity has been shown to be contained in the particulate fractions. *Mycobacterium phlei* (Brodie and Gray, 1956) and *Mycobacterium avium* (Kusunose et al., 1956) may appear to be exceptions, since the “soluble” fraction is also required for succinoxidase activity. However, the “soluble” fractions may simply remove inhibitory products as suggested by Kusunose, or may contain products of partial fragmentation of the succinoxidase complex resulting from prolonged sonic treatment.

It is interesting that in every microorganism with succinoxidase activity where there is information on the cytochrome composition of the organism, a \(b\)-type cytochrome (\(b, 564 \text{ m}\(\mu\), or
Succinoxidase of P. tularensis

Birk, Y., Silver, W. S., and Heim, A. H. 1957

Brodie, A. F. and Gray, C. T. 1956
Activation of coupled oxidative phosphorylation in bacterial particulates by a soluble factor(s). Biochim. et Biophys. Acta, 19, 384–386.

Brodie, A. F. and Gray, C. T. 1957
Bacterial particles in oxidative phosphorylation. Science, 125, 534–537.

Bruegger, J. H., Wilson, P. W., Glenn, J. L., and Crane, F. L. 1957

Chain, P. and Kuin, T. P. 1942

Chance, B. 1957

