During experiments with *Haemophilus gallinarum*, mycoplasma of similar identity, were isolated from the infraorbital sinuses of chickens with coryza. These organisms were unrelated, serologically and by standard biochemical tests, to any other mycoplasma of avian origin. Furthermore, the organisms grew at room temperature in the absence of serum proteins, and were not pathogenic to either chickens or embryonating chicken eggs. Accordingly, the organisms were named *Mycoplasma inocuum* sp. n. (Adler, Shifrine, and Ort Mayer, J. Bacteriol. 82:239, 1961).

It was since determined that antisera against *M. laidlawii*, prepared in donkeys (provided by the CSIRO—Animal Health Research Laboratory, Victoria, Australia) and in rabbits, agglutinated *M. inocuum* at a titer of 1:320. The antisera for *M. mycoides*, *M. agalactiae*, *M. capri*, and several other strains of goat and cattle origin failed to agglutinate an *M. inocuum* antigen. Antiserum prepared in rabbits against *M. inocuum* agglutinated *M. laidlawii* at a titer of 1:160. Thus, *M. inocuum* and *M. laidlawii* are serologically homologous.

Recently, it was demonstrated (Castrejon-Diez, Fisher, and Fisher, J. Bacteriol. 86:627, 1963) that these two mycoplasma differ in their glucose metabolism. *M. inocuum* can metabolize glucose through the hexose monophosphate shunt, whereas this shunt is absent in *M. laidlawii*.

In view of the serological identity and metabolic disimilarity of *M. laidlawii* and *M. inocuum*, our isolate may be considered as *M. laidlawii* var. *inocuum* comb. nov.

INHIBITORS OF PREFERENTIALLY STIMULATED DEOXYRIBONUCLEIC ACID SYNTHESIS IN PNEUMOCOCCI

WILLIAM FIRSHEIN AND WERNER BRAUN

Wesleyan University, Middletown, Connecticut, and Institute of Microbiology, Rutgers, The State University, New Brunswick, New Jersey

Received for publication 25 November 1963

Enzymatic digests of deoxyribonucleic acid (DNA), regardless of the source of the DNA, can promote population changes of *Brucella abortus*, *Diplococcus pneumoniae*, and other bacteria, from R (avirulent) → S (viral) in vitro, and, in the case of gram-positive bacteria, produce a direct stimulation of the growth of virulent types, particularly when deoxynucleosides (DNS) and deoxynucleotides (DNT) are added (Braun, J. Cellular Comp. Physiol. 52:337, 1958; Firshein and Braun, J. Bacteriol. 79:246, 1960; McKee and Braun, Proc. Soc. Exptl. Biol. Med. 109:106, 1962). Certain nucleic acid derivatives and analogues have been found to antagonize such effects of enzymatic digests of DNA (Braun, p. 187. *In Biological Interactions in Normal and Neoplastic Growth*, Little, Brown & Co., Boston, 1962), especially kinetin riboside, 1-cylopentyl 4-furfuryl-amine pyrazolo (3,4-d) pyrimidine (CFP), 2 mercapto-6 amino purine, and 2-acetyl-amino 5-nitrothiazole. (The latter was active only at high concentrations, 100 μg/ml, and tended to stimulate, rather than inhibit, at low concentrations, 10 μg/ml.)

In view of the finding that enzymatic digests of DNA, or certain fractions thereof, can selectively stimulate DNA synthesis of resting S pneumococci in the presence of DNS and DNT (Firshein, J. Bacteriol. 82:156, 1961), it became of interest to determine whether these inhibitors can also interfere with the stimulation of DNA synthesis in resting pneumococci elicited by enzymatic digests of DNA. Kinetin riboside, at all concentrations tested, failed to inhibit the preferential