Genetic Determination of Enzymes Synthesizing O-Specific Sugars of Salmonella Lipopolysaccharides

HIROSHI NIKAIDO, KISHIKO NIKAIDO, AND P. HELENA MÄKELÄ

Biochemical Research Laboratory, Massachusetts General Hospital, and Department of Bacteriology and Immunology, Harvard Medical School, Boston, Massachusetts; and Department of Serology and Bacteriology, University of Helsinki, Helsinki, Finland

Received for publication 12 November 1965

ABSTRACT

NIKAIDO, HIROSHI (Massachusetts General Hospital, Boston, Mass.), KISHIKO NIKAIDO, AND P. HELENA MÄKELÄ. Genetic determination of enzymes synthesizing O-specific sugars of Salmonella lipopolysaccharides. J. Bacteriol. 91:1126-1135. 1966.—Levels of enzymes involved in the biosynthesis of various nucleotide sugars were examined in parental strains and recombinants obtained in crosses between Salmonella of groups B, C₉, and C₁ with the O antigen specificities 4, 5, 12; 6, 8; and 6, 7, respectively. The results showed that smooth strains of groups B and C₁ possessed the enzymes for the synthesis of guanosine diphosphate mannose, cytidine diphosphate abequose, and thymidine diphosphate rhamnose; these sugars are constituents of their lipopolysaccharides. Group C₁ lipopolysaccharide is devoid of both abequose and rhamnose, and the corresponding enzymes for cytidine diphosphate abequose synthesis, as well as the enzyme(s) catalyzing the last step(s) of thymidine diphosphate rhamnose synthesis, were undetectable in S. montevideo of this group. Two other enzymes also involved in the biosynthesis of thymidine diphosphate rhamnose were present at a low level of activity; their function in this strain is not known. The analysis of enzyme levels in recombinants indicated that genes determining at least eight of the enzymes involved in the biosynthesis of nucleotide-bound mannose, rhamnose, and abequose were located in the O locus known to determine the specificity of the O antigen. In three rough recombinant strains, enzyme levels indicated that crossing-over had presumably occurred within the O locus. The results also suggested a high degree of nonhomology in this region of the chromosome between groups B and C₁.

In genetic crosses between Salmonella species of different antigenic groups, recombinants were obtained among which the parental and some new types of O antigens segregated (7, 11, 12). A major gene locus controlling O antigen specificity showed close linkage to his, the locus for histidine biosynthesis, and was mapped between his and metG. (Symbols are defined in Table 1.) The rouB class of rough mutants, which cannot synthesize any O-specific material, also map at this O locus (27).

It is known that the O antigenic specificities in Salmonella are determined by the structure of the "O-specific side chain" (or S-specific side chain) portion of the cell wall lipopolysaccharide. Thus the O locus should contain information for the structure of these side chains, and, more specifically, it should determine several transferases involved in the orderly incorporation of component sugars into these side chains. These side chains are believed to be composed of many repeating units, each containing several monosaccharide units (22, 25), some of which are known to be present only in the O-specific side chains and are conveniently referred to as the O-specific sugars. Various Salmonella serotypes contain widely different O-specific sugars (8). Thus, the O-specific sugars in both groups B and C₁ are D-mannose, L-rhamnose, and abequose. These two groups show no serological cross-reactions in rabbit antisera, in spite of the similar composition of their lipopolysaccharides; linkages between these sugars, therefore, must be completely different (25). In group D, the O-specific sugars are D-mannose, L-rhamnose, and tyvelose; and in group C₁, D-mannose. These monosaccharides are used for the O antigen.

1 Present address: State Serum Institute, Helsinki, Finland.
synthesis in their activated form, i.e., as nucleotide sugars, which are synthesized as shown in Fig. 1. In this paper, the three enzymes catalyzing the three successive steps leading from α-D-glucose-1-phosphate (G-1-P) to thymidine diphosphorhamnose will, for the sake of brevity, be designated as rha-1, rha-2, and rha-3; the three enzymes effecting the synthesis of cytidine diphosphoabequose as abe-1, abe-2, and abe-3; and the three enzymes catalyzing the synthesis of guanosine diphosphomannose as man-1, man-2, and man-3 (Fig. 1). Reactions rha-3 and abe-3 undoubtedly involve more than one enzyme each, but for the purpose of this study this point can temporarily be disregarded.

Many of the enzymes concerned with the synthesis of O-specific sugars have no other known functions. Their activity can therefore be expected to differ extensively in various serological groups. One such difference has been found between groups B and D, the former possessing the enzyme converting cytidine diphosphate-6-deoxyglucose into CDP abequose, whereas the latter converts the same precursor to CDP tyvelose (4, 14; Nikaido and Nikaido, in press).

Furthermore, since in Salmonella many genes concerned with related functions are known to be clustered (2), the genes determining most of these enzymes—whose sole function is the biosynthesis of O-specific side chains—might be expected to reside also in the O gene cluster, in addition to the genes for the transferases already mentioned. In a rough mutant which maps in the rouB or O locus, a defect in the enzyme rha-3 has been found, indicating that the gene determining this enzyme is indeed a part of the O locus (20).

The present paper is an analysis of the level of these nucleotide sugar-synthesizing enzymes in Salmonella strains of groups B, C5, and C1, and their hybrids. It will be shown that these groups differ in their content of these enzymes, and that most of the enzymes concerned with the synthesis of the O-specific sugars are genetically determined at the O locus.

MATERIALS AND METHODS

Bacterial strains. Recombinants were obtained by crossing the smooth parent strains of different O groups (12). Most of them were selected so as to have inherited the donor his+ allele with none, parts, or all of the nearby O locus. One recombinant, SH 912, however, was selected for the donor tyr+ marker. In addition to the parent strains and recombinants, several rough mutants of group C5 were also used for analysis. The main characteristics of the strains are given in Table 1.

Chemicals. Uridine diphosphogalactose was isolated from mutants lacking uridine diphosphogalactose-4-epimerase (16). α-D-Mannose-1-phosphate was a kind gift of G. Ashwell. Pαα-pyrophosphate was synthesized according to Bergmann (1). Other chemicals were obtained from commercial sources: G-1-P, D-mannose-6-phosphate, and D-fructose-6-phosphate from Sigma Chemical Co., St. Louis, Mo.; uridine triphosphate, thymidine triphosphate, guanosine triphosphate, cytidine triphosphate, cytidine diphos-
zymes. The 0-antigen C, X and sonic were were streptomycin tide phosphate in Tables 2-4. side-chain; cific like in synthesis, enzyme are shown previously (19).

Preparation of cell-free extracts and assay of enzymes. The cells were grown in nutrient broth (Difco), and sonic extracts were prepared as described previously (19). The reactions catalyzed by the enzymes are shown in Fig. 1. It should be noted that all assays were carried out with tris(hydroxymethyl)amino-
methane (Tris)-HCl buffer (pH 7.5), and that for some of the enzymes this pH was not optimal for their activity. Some enzymes were assayed at 37 C (pyrophosphorylases, uridine diphosphogalactose-4-epimerase, rha-2, rha-3, abe-2, and abe-3); the others were assayed at 25 C. Furthermore, owing to the presence of interfering enzymes in the crude extracts, activities of some enzymes were overestimated, and those of some were underestimated. The absolute values obtained, therefore, have little significance.
However, the results do permit the comparison of the relative levels of each enzyme among the strains examined.

Nucleoside diphosphate hexose pyrophosphorylases. These enzymes (rha-1, abe-1, man-3, and uridine diphosphogluco pyrophosphorylase) were assayed by measuring the hexose-1-phosphate-dependent exchange of labeled pyrophosphate into nucleoside triphosphates, according to the principle established by Neufeld et al. (18). Incubation mixtures contained the following in a final volume of 1.0 ml: Tris-HCl buffer (pH 7.5), 100 μmoles; MgSO₄, 10 μmoles; and KF, 5 μmoles. In addition, the incubation mixture for uridine diphosphogluco pyrophosphorylase contained uridine triphosphate, 1.0 μmole; P₃₂-pyrophosphate, 2.0 μmoles; and G-1-P, 1.0 μmole. The mixture for rha-1 contained thymidine triphosphate, 1.0 μmole; P₃₂-pyrophosphate, 1.0 μmole; and G-1-P, 1.0 μmole. The mixture for abe-1 contained cytidine triphosphate, 1.0 μmole; P₃₂-pyrophosphate, 1.0 μmole; and G-1-P, 1.0 μmole. The mixture for man-3 contained guanosine triphosphate, 1.0 μmole; P₃₂-pyrophosphate, 5 μmoles; and α-D-mannose-1-phosphate, 2.0 μmoles. After 10 min of incubation at 37 C, the reaction was stopped by the addition of 2 ml of 5% trichloroacetic acid. The tubes were transferred into an ice bath, and 0.2 ml of charcoal suspension (Darco G-60, 15% (w/v) in water) was added. After 3 min, the tubes were centrifuged in the cold, and the charcoal sediment was washed three times by resuspension and centrifugation, each time with 2.5 ml of ice-cold water. The sediment, containing the adsorbed nucleoside triphosphates, was suspended in 3.0 ml of 50% ethyl alcohol, which was 0.3 N in respect to NH₄OH, and samples were plated and counted with a Nuclear-Chicago gas flow counter equipped with a Micromill window. For each determination, controls without hexose-1-phosphate were always run, and the counting rate of the controls was subtracted. Incorporation in these control tubes was very small (about 3% of experimental, group B parent) in the case of rha-1, but was considerably higher in the assay of abe-1.

Thymidine diphosphogluco oxidoreductase (rha-2) and "thymidine diphosphorhamnose synthetase" (rha-3). These reactions were measured as described by Okazaki et al. (21). For the assay of the latter reaction, thymidine diphosphogluco was used as substrate, and an excess of thymidine diphosphogluco oxidoreductase (crude extracts of an *S. typhimurium* mutant strain, TV 208, which is defective in rha-3) was added.

Cytidine diphosphogluco oxidoreductase (abe-2) and "cytidine diphosphoatease synthetase" (abe-3). These enzymes were assayed as described elsewhere (Nikaido and Nikaido, in press), except that, for the assay of abe-3, cytidine diphosphatase-4-keto-6-deoxyglucose-C⁴ (0.12 μmole) was used as substrate and 0.05 μmole of flavin mononucleotide was also added to the reaction mixture.

Phosphomannomutase (man-2). This enzyme was assayed spectrophotometrically by following the reduction of NADP by G-6-P dehydrogenase and G-6-P which was derived from mannose-1-phosphate through reactions man-2, man-1, and phosphoglucoisomerase (Fig. 1). Since the overall reaction was dependent upon the endogenous man-1, phosphoglucoisomerase, and mannose-6-diphosphate or glucose-1,6-diphosphate, or both [cofactors of man-2 (6)], contained in the crude extracts, the values obtained for this enzyme represent minima only. Enzyme man-1, however, was found to be present in all cases (Tables 2-4). Phosphoglucoisomerase, whose activity was usually about 100 times higher than that of man-1 (20), was also assayed in cases where the activity of man-2 was found to be low; phosphoglucoisomerase was found to be normal in all of these cases. The reaction mixture for man-2 contained the following in a total volume of 1.0 ml: Tris-HCl buffer (pH 7.5), 50 μmoles; MgCl₂, 2 μmoles; cysteine, 1 μmole; α-D-mannose-1-phosphate, 1.0 μmole; NADP, 0.4 μmole; G-6-P dehydrogenase, 1 μg; and crude extract. The reduction of NADP was followed as in all the other assays described below, at 340 mₚ with a Cary model 15 recording spectrophotometer. After a long lag (usually about 30 min), the reaction attained a constant rate.

Phosphomannoisomerase (man-1). This enzyme was assayed spectrophotometrically in a reaction mixture similar to that for the assay of man-2, except that mannose-6-phosphate (0.4 μmole) replaced mannose-1-phosphate as substrate and that cysteine was omitted. The reaction was started by the addition of sonic extract. Owing to the contamination of the substrate with small amounts of G-6-P, there was an initial burst of NADP reduction, but after 3 to 5 min the reaction attained a constant rate.

Phosphoglucomutase and phosphoglucoisomerase. These enzymes were also assayed spectrophotometrically. The reaction mixture contained, in a final volume of 1.0 ml: Tris-HCl buffer (pH 7.5), 50 μmoles; MgCl₂, 5 μmoles; NADP, 0.5 μmole; G-6-P dehydrogenase, 1 μg; and crude extract. In addition, the mixture for phosphoglucomutase contained cysteine, 5 μmoles; G-1-P, 1.0 μmole; and glucose-1,6-diphosphate, 2 mMmole. The reaction mixture for phosphoglucoisomerase contained fructose-6-phosphate, 1.0 μmole.

Uridine diphosphogalactose-4-epimerase. This enzyme was assayed according to the two-step procedure of Maxwell, Kurahashi, and Kalekar (15).

RESULTS

Enzyme levels in the smooth parent strains. Results of enzyme assays on the smooth parent strains and the rough mutants are given in Table 2. The three enzymes of thymidine diphosphorhamnose synthesis, and the three of cytidine diphosphoatease synthetase, were present with approximately the same levels of activity in group B (4, 5, 12) and group C (6, 8) organisms; this is consistent with the fact that the organisms of both groups contain rhamnose and abequose in their lipopolysaccharides. In contrast, the group C (6, 7) strain, whose lipopolysaccharide is
Table 2. Enzyme levels in smooth Salmonella strains of groups B, C1, and C2, and in some rough mutants of group C1

<table>
<thead>
<tr>
<th>Species</th>
<th>O serotype</th>
<th>Strain</th>
<th>Specific activity of enzyme†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>rha-1</td>
</tr>
<tr>
<td>S. abony</td>
<td>Group B</td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>Group B</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>S. takoradi</td>
<td>Group C2</td>
<td></td>
<td>940</td>
</tr>
<tr>
<td>Group C2</td>
<td></td>
<td></td>
<td>4,5,12</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>Group C1</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>Group C1</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>S. montevideo</td>
<td>Group C1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

*Abbreviations for the names of enzymes are given in Fig. 1. For SW 1444 and SH 541, values obtained in experiments performed several months apart are shown, to indicate the degree of reproducibility of the assays. The values for these strains shown in Tables 3 and 4 are the average of the two sets of results.

† Expressed as millimicromoles per milligram of protein per hour.
‡ Not determined.

The two rough recombinants of Table 3 represent very rare types, each encountered only once in the 201 recombinants tested (12). Here the pattern of enzyme levels was essentially a mixture of those of both parents, but with additional en-
Table 3. Enzyme levels in parents and recombinants of crosses between group B (4,5,12) donors and group C₁ (6,7) recipients

<table>
<thead>
<tr>
<th>O serotype</th>
<th>Strain</th>
<th>Specific activity of enzyme†</th>
<th>Enzyme pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rha-1</td>
<td>rha-2</td>
</tr>
<tr>
<td>S 4,5,12</td>
<td>SW 1444</td>
<td>410</td>
<td>570</td>
</tr>
<tr>
<td>S 6,7</td>
<td>SH 541</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>S 6,7</td>
<td>SL 958</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>SR (4,5,12)</td>
<td>SH 806</td>
<td>380</td>
<td>650</td>
</tr>
<tr>
<td>SR (4,5,12)</td>
<td>SH 954</td>
<td>610</td>
<td>460</td>
</tr>
<tr>
<td>SR (4,12)</td>
<td>SH 805</td>
<td>450</td>
<td>390</td>
</tr>
<tr>
<td>SR (4,12)</td>
<td>SH 817</td>
<td>490</td>
<td>470</td>
</tr>
<tr>
<td>SR (4,12)</td>
<td>SL 953</td>
<td>530</td>
<td>690</td>
</tr>
<tr>
<td>S 4,12</td>
<td>SL 953</td>
<td>590</td>
<td>410</td>
</tr>
<tr>
<td>R</td>
<td>SL 957</td>
<td>270</td>
<td>30</td>
</tr>
<tr>
<td>R</td>
<td>SH 912</td>
<td>280</td>
<td><5</td>
</tr>
</tbody>
</table>

* SW 1444 and its derivatives were the donor; SH 541 and its derivatives, the recipients; the other strains represent recombinants.
† Expressed as millimicromoles per milligram of protein per hour.

zyme defects. In both strains the abequose enzymes were undetectable, as in the recipient group C₁ parent; of the rhamnose enzymes, rha-1 was donor group B-like in both strains, but rha-2 was group C₁-like in the strain SL 957, and undetectable in the other strain, SH 912; rha-3 was undetectable in both. The mannone enzymes man-2 and man-3 were undetectable in contrast to their presence in both parent strains, whereas man-1 was present at the same level of activity as in both parent strains. (In contrast to man-2 of SH 1086, only traces of man-2 activity were observed in the extracts of SH 912 and SL 957, even when glucose-1,6-diphosphate was added.)

Table 4 gives the results for recombinants from crosses where the donor strain was of group C₁ (6,7), and the recipient of group B (4,5,12), that is, the reverse of the crosses shown in Table 3. All recombinants with donor group C₁ antigens 6₁,7 or 6₂,7 had a group C₁-like enzyme pattern. Four rough recombinants were found among 1,554 recombinants studied (Mäkelä and Hovi, unpublished data). One of them had a completely group C₁-like enzyme pattern, two had a group B-like pattern, and one, SH 1086, had a complex pattern. It had donor group C₁-like levels for the three abequose enzymes and the three rhamnose enzymes; of the mannose enzymes, man-3, present in both parents, was undetectable in this strain, but man-1 was present at the same level as in both parents. Its man-2 showed a peculiar behavior: the activity was extremely low (0.01 μmole per mg of protein per hr) when assayed by the regular method, but was normal (0.24 μmole) when the cofactor glucose-1,6-diphosphate (10 μmolecules) was added to the reaction mixture. An assay of endogenous glucose-1,6-diphosphate in a crude extract of this strain revealed that its content was about 50% of that in a crude extract of Salmonella typhimurium LT2. It is still not clear, however, whether the peculiar behavior of man-2 is due to a decreased content of endogenous glucose-1,6-diphosphate or to an alteration in the structure of the enzyme (man-2) itself.

Discussion

Inheritance of O antigens in intergroup crosses of Salmonella. It has been shown that the O specificities 4 and 12 of group B, 9 of group D, 6 and 7 of group C₁, and probably 6 and 8 of group C₂ are determined at a locus, O, which is closely linked to his (7, 11; Stocker, Wilkinson, and Mäkelä, in press). The antigen factor 5, which is found only in group B, is determined at a locus close to the O locus (11, 12, 24).

Thus, in crosses between strains of group B and C₁ or C₂, the majority of recombinants which have inherited the his allele from the donor parent have also inherited the closely linked O allele of the donor and are serologically donorlike. There are three complications, however. (i) When the donor parent was of group C₁ with the antigenic formula 6₁,7, most recombinants were found to be 6₁,7 (see SH 1049 and SH 1050 of Table 1). The difference is due to a prophage carried by the 6₁,7 strains; the 6₂,7 recombinants can be converted to 6₁,7 by the action of this phage (Mäkelä and Hovi, to be published). (ii) When the donor was of group B (4,5,12), most his⁺
recombinants had these specificities but were not smooth like the donor parent. Instead, they were semirough (SR): either SR (4,12), with the antigens 4 and 12 (see SH 805, SH 817, and SL 956 of Table 1), or SR (4,5,12), with antigen 5 as well as 4 and 12 (see SH 806 and SL 954 of Table 1). The SR form is believed to contain only one repeating unit per O-specific side chain, presumably owing to defects in a transerase which transfers the second and subsequent repeat units to the incomplete lipopolysaccharide (17). This defect maps far away from O and his, at a locus provisionally called SR or rouC and located between gal and try. (iii) The gene O-5, which determines the factor antigen 5, that is, the acetylation of the galactose located in the repeat unit of group B (9), is apparently absent in group C and group B. Because this locus is not very closely linked to the main O locus, crossovers between these two loci produced 4,12 recombinants when the group B parent was 4,5,12 (12).

Enzyme levels and the composition of lipopolysaccharides. In the three groups, B, C1, and C2, the content of enzymes concerned with the synthesis of sugar-nucleotides varied according to the content of the sugar components in their lipopolysaccharides. Enzymes synthesizing uridine diphosphoglucose, uridine diphospho-galactose, and guanosine diphosphomannose were found in all the strains whose lipopolysaccharides are known to contain these sugars. Differences, however, were found in the levels of two of the mannose enzymes. The three abequose enzymes and rha-3 were present at approximately the same levels in groups B and C, whose lipopolysaccharides contain both abequose and rhamnose; these enzymes were undetectable in group C1, whose lipopolysaccharide is devoid of these sugars. The other two rhamnose enzymes, rha-1 and rha-2, were much less active in group C1 than in the other two groups, but a low level of activity was definitely demonstrated. This is interesting in view of the fact that these two enzymes also participate in the biosynthesis of thymidine diphosphate-4-acetylamino sugars (13), one of which has been found to be a component of the lipopolysaccharide of Chromobacterium violaceum (28). Although such sugars have not been isolated from acid hydrolysates of O antigens of enteric bacteria, some workers suspect that the sugars may be present but are broken down during acid hydrolysis (13).

Genes determining the enzymes of nucleotide-sugar synthesis. Our data provide information on the genetic determination of eight of the nine enzymes studied. Strains of groups B and C1 differed significantly in the activity levels of seven enzymes (abe-1,2,3; rha-1,2,3; and man-3). In all recombinants, the enzyme pattern corresponded to their O antigens: those with the group C1 specificities 61,7 or 62,7 had a group C1-like enzyme pattern, no matter whether the recipient or the donor parent had been of group C1; and those with the group B antigens 4,12 or 4,5,12, either smooth or semirough, all had a group B-

Table 4. Enzyme levels in the parents and recombinants of crosses between a group C1 donor and group B recipients

<table>
<thead>
<tr>
<th>O serotype</th>
<th>Straina</th>
<th>Specific activity of enzymesb</th>
<th>Enzyme pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rha-1</td>
<td>rha-2</td>
</tr>
<tr>
<td>S 61,7</td>
<td>SH 541</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>S 4,5,12</td>
<td>LT2</td>
<td>940</td>
<td>450</td>
</tr>
<tr>
<td>S 62,7</td>
<td>SH 1049</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>S 62,7</td>
<td>SH 1050</td>
<td>20</td>
<td>230</td>
</tr>
<tr>
<td>S 61,7</td>
<td>SH 1101</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>R</td>
<td>SH 1070</td>
<td>30</td>
<td>160</td>
</tr>
<tr>
<td>R</td>
<td>SH 1104</td>
<td>1,590</td>
<td>430</td>
</tr>
<tr>
<td>R</td>
<td>SH 1115</td>
<td>1,590</td>
<td>500</td>
</tr>
<tr>
<td>R</td>
<td>SH 1086</td>
<td>30</td>
<td>150</td>
</tr>
</tbody>
</table>

a A derivative of SH 541 was the donor; derivatives of LT2, the recipients; the other strains represent recombinants.

b Expressed as millimicromoles per milligram of protein per hour.

c Not determined.

d Much higher activity was demonstrated when glucose-1,6-diphosphate was added.
like enzyme pattern. As the O antigen specificity in these groups is inherited as if determined by one genetic locus, O_l closely linked to his (12), the activity levels of the seven enzymes must also be determined at the same O locus. (As a rule the recombinants in Salmonella crosses receive only short segments of chromosome from the donor, F^+, Hfr, or F^- bacteria. If these enzymes were determined by genes located outside the O locus, segregation between the genes and the genes of the O locus would have been observed.)

This could either mean that the structural genes for all these enzymes reside in the O locus, or that this locus merely controls the activity levels of the enzymes by some kind of repression-derepression mechanism. The former alternative is supported by the enzyme patterns of the rough recombinants from crosses between group B donors and group C recipients (Table 3). The levels of enzymes rha-1 and rha-2, which catalyze the two successive steps of thymidine diphosphorhamnose synthesis and which were both high in the donor and both low in the recipient parent, showed a mixed pattern in the rough recombinants. In SL 957, rha-1 was high and rha-2 low; in SH 912, rha-1 was high and rha-2 was undetectable. These various patterns, which are difficult to explain by repression-derepression, can be easily understood as a result of crossing-over (see below), if the different activity levels are assumed to be the reflection of different structural genes.

The assay for man-2 was only semiquantitative. Thus, it was not possible to map the gene for man-2 in the same way as the genes already discussed. Its activity, however, disappeared in some rough recombinants (SL 957 and SH 912) which are believed to have had crossovers within the O locus. This result could be best understood if the structural gene for man-2 is in the O locus (see below).

Phosphomannoisomerase (man-1) did not differ significantly in activity among various groups; therefore, its determinant gene could not be mapped from our results alone. However, B. A. D. Stocker and M. J. Osborn (personal communication) investigated mutants defective in this gene and found that it mapped between the loci try and gal, that is, outside the O locus.

The presence or absence of antigen 5 in the recombinants with group B specificity was not reflected in their content of the enzymes of nucleotide-sugar synthesis; this is what one would expect if gene $O-5$ determines the acetylation of a sugar unit already present in the lipopolysaccharide. Nor were differences found between semirough and smooth forms of 4,12 or 4,5,12 recombinants, also as expected if the semirough form is a result of a defect in one of the transferases (none of which was measured in this study).

Rough recombinants. Of the very few rough recombinants encountered (Tables 3 and 4), two had a recipientlike and one a donorlike enzyme pattern. Their rough character could have resulted from a mutation in the recipient or the donor, or from a crossover within the O locus which caused the loss of a transferase or transferases without affecting the enzymes of nucleotide-sugar synthesis. From our data it is not possible to decide between these two alternatives.

In addition to these recombinants, there were three other rough recombinants with a mixed pattern of enzymes. It seems unlikely that they were derived from rough mutants of either parent, because two of them showed defects involving more than one enzyme in each case; the 4 rough mutants of *S. montevideo* studied in this paper (Table 2) and the 12 rough mutants of *S. typhimurium* studied by Nikaido et al. (20) had no defect in these enzymes, with the exception of a single strain with only one defect.

In these three rough recombinants, rha-1 was always donorlike, showing that they all had received at least a part of the donor O locus. This finding is significant for the interpretation of SH 912, a recombinant selected for having the donor allele of *try*, which is located quite far from the O locus. It is known to have the recipient his allele, and thus might be thought unlikely to have the donor O allele. Nevertheless, in view of its donorlike level of rha-1, and in view of the fact that its rough character was shown to be genetically closely linked to his (Mäkelä, unpublished data), it seems to have received a part of the donor O allele and to represent a case with quadruple crossovers, one of which should be within the O locus.

Rha-2 in the recombinant SH 912, man-2 in SH 912 and SL 957, and man-3 in all three recombinants were undetectable, but all of these enzymes were present in both parents. We assume that these enzymes were lost as a result of crossovers involving the nonhomologous O segments of group B and group C chromosomes; the existence of such nonhomology is indeed suggested also by various other considerations (see below).

The enzymes rha-3 and abe-1,2,3 were undetectable in these three rough recombinants. As they were also undetectable in one of the parents, it is not possible to say whether they were affected by the crossing-over or not.

Structure of O locus. The O locus in group B thus probably contains the structural genes for the three enzymes of thymidine diphosphorham-
nose synthesis, for the third of cytidine diphas-
phoabequose synthesis, and for two mannose
enzymes, man-2 and man-3. In group C1, abe-
quose enzymes and the enzyme rha-3, and thus
probably the corresponding genes, are missing;
the enzyme man-3 is present, and its determinant
gene appears to reside in the O locus. Thus, the
O loci of the two groups must have large struc-
tural differences. In addition, even the genes for
functionally similar enzymes may not be ho-
logous. Transferases must also be quite dif-
ferent among groups B, C1, and C2, since the
structure of the end products—O-specific side-
chains—seems to be very different, as judged by
their distinct immunological specificities. These
transferases are apparently also determined
genetically at the O locus, adding to its nonho-
logous character.

It seems possible that an analysis of this kind
would allow a mapping of the genes for the vari-
ous synthetict and transferring enzymes within
the O locus. Unfortunately, crossovers within
the O locus seem to be very rare, as one would
expect between two parental chromosome seg-
ments with little homology and thus little op-
portunity for effective pairing. It is probable
that most of such crossovers would yield sero-
logically rough forms, as a failure in the synthe-
sis of a proper repeat unit would in most cases
result in the production of a lipopolysaccharide
without any O-specific side chains, that is, a
rough antigen. Rough recombinants (as well as
possible but apparently exceedingly rare types
with new smooth antigens) should therefore be
looked for and investigated. An analysis of the
specific transferases would be as important as
the study of the enzymes of nucleotide-sugar
synthesis; we are now planning to attempt such
an analysis.

ACKNOWLEDGMENTS

We are grateful to B. A. D. Stocker of the Lister
Institute of Preventive Medicine, London, for helpful
criticisms.

This investigation was supported by Public Health
Service grant AI-05729 from the National Institute
of Allergy and Infectious Diseases and grant GM-
12046 from the Division of General Medical Sciences,
and by grants from the Finnish Medical Research
Council and the Sigrid Jusélius Foundation.

LITERATURE CITED

1. BERGMANN, F. H. 1962. Bacterial amino acyl
RNA synthetases, p. 708–718. In S. P. Colow-
wick and N. O. Kaplan [ed.], Methods in en-
York.

2. DEMEREC, M., AND P. E. HARTMAN. 1959. Com-
plex loci in microorganisms. Ann. Rev. Micro-

3. EDWARDS, P. R., AND D. W. BRUNER. 1942.
Sero logical identification of Salmonella cul-

4. ELBEIN, A. D. 1965. The enzymatic synthesis of

5. GIBABURG, V. 1964. Sugar nucleotides and the
26:35–88.

6. GLASER, L., S. KORNFIELD, AND D. H. BROWN.
1959. Preparation and properties of phospho-
mannomutase from baker’s yeast. Biochim.

7. JOHNSON, E. M., B. KRAUSKOPF, AND L. S.
BARGAY, AND H. NIKAIIO. 1964. Transferases of
Salmonella.

8. KAUFFMANN, F., O. LÜDERITZ, H. STERLIN, AND
O. WESTPHAL. 1960. Zur Immunchemie der
O-Antigene von Enterobacteriaceae. I. Ana-
yse der Zuckerbausteine von Salmonella-O-

9. KOTELKO, K., A. M. STAUB, AND R. TINELLI.
1961. Etude immunochimique sur les sal-
monelle VIII. Rôle des groupement O acétyls
Pasteur 100:618–637.

10. MÄKELÄ, P. H. 1963. HfR males in Sal monella

11. MÄKELÄ, P. H. 1965. Inheritance of the O anti-
gen of Salmonella groups B and D. J. Gen.

12. MÄKELÄ, P. H. 1966. Genetic determination of
the O antigens of Salmonella groups B (4, 5, 12)

Thymidine diphosphate 4-acetamido-4,6-di-
ideoxyhexoses. I. Enzymatic synthesis by
239:2454–2463.

Reversible 2-epimerization of CDP-paratose
Commun. 20:169–175.

15. Maxwell, E. S., K. KURAHASHI, AND H. M.
Kalckar. 1962. Enzymes of the Leloir path-

Isolation of uridine diphosphogalactose from
Escherichia coli mutant cells. J. Biochem.
(Tokyo) 56:145–150.

17. Naide, Y., H. NIKAIIO, P. H. MÄKELÄ, R. G.

18. NeuFeld, E. F., V. Ginsburg, E. W. Putman,
D. Fanshier, AND W. Z. Hassid. 1957. Forma-
tion and interconversion of sugar nucleotides.

