Electrophoretic and Immunoelectrophoretic Studies of Sera from Normal, Tuberculous, and Noninfected Tuberculin-Sensitive Guinea Pigs

T. J. DARDAS AND V. H. MALLMANN

Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan

Received for publication 19 March 1966

ABSTRACT

DARDAS, T. J. (Michigan State University, East Lansing), and V. H. MALLMANN. Electrophoretic and immunoelectrophoretic studies of sera from normal, tuberculous, and noninfected tuberculin-sensitive guinea pigs. J. Bacteriol. 92:76–81. 1966.—Normal guinea pig serum was separated into seven fractions by electrophoresis on cellulose acetate membranes. Thirty antigens were found by immunoelectrophoresis: albumin, 6 α1 globulins, 11 α2 globulins, 5 β1 globulins, and γ globulin. Hyper-α2-globulinemia was detected in sera from guinea pigs 14 days after inoculation with viable virulent Mycobacterium bovis. An additional α2 globulin, not demonstrable prior to infection, was detected concomitantly with the hyper-α2-globulinemia by immunoelectrophoresis. The additional α2 globulin was tentatively named α2-T. It persisted until the death of the guinea pigs. Neither hyper-α1-globulinemia nor the α2-T antigen was detected by cellulose acetate electrophoresis and immunoelectrophoresis of sera from guinea pigs sensitized with heat-killed M. bovis. Both changes were due to the disease, not to delayed sensitivity alone.

A common aim of many studies of disease in experimental animals is to disclose features of pathogenesis common to the natural disease in man and animals; similarities can then be studied in greater detail to understand better the disease process. Many attempts have been made to detect specific antibodies, antigens, or other substances in the sera of infected individuals of pathognomonic significance for tuberculosis, but the results have been disappointing. Variations in serum proteins during the disease have been examined by electrophoresis (6); however, the changes are nonspecific and resemble quite closely those that occur in a variety of other bacterial and viral diseases (2).

Hypoalbuminemia and hyperglobulinemia have been detected in tuberculous guinea pigs by zone electrophoresis, (5, 9, 10, 11). Because of the greater resolution of serum proteins by immunoelectrophoresis, it was felt that additional information could be obtained regarding these changes by use of this procedure.

1 Presented in part at the 64th Annual Meeting of the American Society for Microbiology, Washington, D.C., May 1964. Published with the approval of the Director of the Michigan Agricultural Experiment Station as Journal Article No. 3802.

MATERIALS AND METHODS

Infection and sensitization of guinea pigs. Fifty-two male guinea pigs, approximately 6 months old and weighing approximately 300 g each, were divided into 13 groups of four per group. Serum was obtained from blood collected aseptically from all of the guinea pigs prior to infection or sensitization. The strain of Mycobacterium bovis was isolated in 1960 and identified by growth and morphological characteristics, cytochemical tests, virulence for laboratory animals, and allergenicity for guinea pigs (7): 1 mg injected intradermally into one calf and three swine caused disseminated gross and microscopic lesions; 0.01 mg (wet weight) injected intraperitoneally into guinea pigs consistently caused disseminated gross and microscopic lesions, and death in approximately 45 days.

Each guinea pig in groups one through nine was inoculated intraperitoneally with 0.01 mg (wet weight) of M. bovis. The four guinea pigs in different groups were bled from the heart at 7, 14, 21, 28, 33, and 41 days after inoculation.

Fourteen guinea pigs were inoculated intraperitoneally three times with 1.0 mg (wet weight) per inoculation of heat-killed M. bovis (100 C, 30 min) at 3-day intervals. Fourteen days after the first inoculation, two guinea pigs were inoculated intradermally with 0.1 ml of tuberculin (PPD-S, 1 strength, Parke, Davis & Co., Detroit, Mich.), and observed at 24 and
48 hr; the 10-mm diameter of induration at 48 hr was recorded. Four guinea pigs in groups 10 through 12 were bled at 15, 22, and 29 days, respectively, after inoculation with heat-killed M. bovis.

Anti-guinea pig serum. Portions of the preinoculation guinea pig sera were pooled and precipitated with alum (4). Five adult Dutch Belted rabbits were inoculated intramuscularly with the alum-precipitated antigen and were bled 5 days after a single intraperitoneal injection of untreated guinea pig serum. The antisera were tested individually and pooled.

Cellulose acetate membrane electrophoresis. Samples of 2.5 μl of fresh serum were subjected to electrophoresis for 2 hr, at 4°C, with a current of 1 mA per strip. A barbital-acetate buffer at pH 8.6 was used (8). After electrophoresis, the proteins were stained with Ponceau S and examined in a densitometer.

Immunoelectrophoresis. Immunoelectrophoresis was performed (4), and the immunoprecipitates were stained with protein-, lipid-, and carbohydrate-specific stains (3).

RESULTS

Analyses of normal guinea pig sera. Normal sera were separated into seven components by electrophoresis on cellulose acetate (Fig. 1A). These included albumin, one α1 globulin, one α2 globulin, one β1 globulin, two β2 globulins, and γ globulin. A prealbumin fraction was resolved with a tris(hydroxymethyl)aminomethane-ethylendiaminetetraacetic acid-boric acid buffer (1). Thirty antigens were detected in normal serum examined by immunoelectrophoresis: albumin, 6 α1 globulins, 11 α2 globulins, 6 β1 globulins, 5 β2 globulins, and γ globulin. A representative immunoelectrophoretogram is shown in Fig. 2. The immunoprecipitate pattern varied slightly

![Fig. 1. Typical densitometric recordings of cellulose acetate membranes after electrophoresis of sera from normal (A) and tuberculous guinea pigs at 7 (B), 14 (C), 21 (D), 28 (E), and 33 (F) days postinoculation with Mycobacterium bovis.](http://jb.asm.org/Downloaded from http://jb.asm.org/)
from serum to serum, and most of the precipitates exhibited some variation in displacement and clarity. The lines formed by albumin, α_1-4, α_1-5, α_2-2, α_2-6, β_1-1, and γ globulin were generally found in the same relative position.

Albumin formed the largest and most anodic precipitate in the immunoelectrophoretogram. At least six α_1 globulins were found beneath the curvature of the albumin precipitate. Spatial variations sometimes occurred, and all of the lines were not always present simultaneously. The α_1-4 and α_1-5 globulins were found most frequently, and α_1-2 and α_1-3 least frequently.

The electrophoretic mobility of the 11 α_2 globulins extended from the mid-albumin region to the cathode side of the sample well. The most anodic of these, α_2-1, was frequently obscured by the broad α_2-6 precipitate, except at the anodic end. The α_2-2 globulin, forming a long curvilinear precipitate, was displaced characteristically at its anodic end, and stained readily with protein- and carbohydrate-specific stains. The α_2-5 globulin formed the only precipitate that was stained by the lipid-specific stain Oil Red O. It was stained very slightly by protein-specific stains. The lateral displacement of its precipitate from the diffusion center was very slight. The broadest precipitate in the α_2 region was formed by α_2-6. Depending on the duration of the incubation period and the sample volume, the apex sometimes extended into the antibody reservoir. The α_2-7 globulin formed a long symmetrically curved precipitate with the apex located just anterior to the antigen well. It was usually obscured except at the ends by the albumin, α_2-6, and β_1-1 precipitates. Two other precipitates, α_2-8 and α_2-9, were occasionally found directly over the antigen well. Both had very slight lateral displacement and usually fused...
posteriorly. The anodic ends of both α_2-10 and α_2-11 were usually completely obscured by the larger α_2 globulin precipitates. The mobility and the geometric characteristics of their precipitates could not be determined.

The mobility of the six β_i globulins extended from the mid-α_2 to the mid-β_5 globulin regions. The most prominent β_1 globulin, and the one with the greatest lateral displacement, was β_2. The β_2-4 precipitate exhibited the greatest displacement variation; its length was frequently reduced by nearly one-half as it turned sharply downward past the cathodic end of the α_2-6 precipitate. The β_2-5 globulin produced a nearly straight faintly visible precipitate with less lateral displacement than any other β globulin. Only the curved end of the β_2-6 precipitate was usually visible; the remainder was covered by the β_2-1 precipitate.

Five β_2 globulin antigens were found, the most prominent of which was β_2. It formed a curvilinear precipitate that was markedly thickened and displaced at its cathodic end. The four other β_2 globulins were generally present, but were partially obscured by either the β_2-1 or γ globulin precipitates. The β_2-5 precipitate usually appeared as a spur in the posterior part of the γ globulin line.

The γ globulin precipitate extended from the sample well to the most cathodic part of the immunoelectrophoretogram. Its precipitate was thickened and displaced at the cathodic end.

Serum protein changes during tuberculosis. Representative densitometric recordings of cellulose acetate membranes after electrophoresis of sera collected at various times after inoculation are shown in Fig. 1. No consistent differences were detected in the protein distribution between sera collected prior to and 7 days after inoculation. There was a marked increase in the α_0 globulin content of the sera from three of the four guinea pigs bled after 14 days. The α_0 globulins were substantially increased in the sera from all but one of the remaining animals bled at the time intervals indicated.

Immunoelectrophoresis revealed no consistent differences between sera collected prior to and 7 days after inoculation (Fig. 3).

Sera from two of the three guinea pigs bled 14 days after inoculation contained an antigenic α_2 globulin which was not detected in normal sera. This antigen has been tentatively named α_2-T. Its precipitate formed a dense, nearly symmetrical arc immediately below and nearly parallel to the concave surface of the α_2-6 precipitate. It was stained by protein and carbohydrate stains but not by Oil Red O. The lateral displacement of its precipitate from the diffusion center was similar to that of albumin, α_1-6, and β_1-1.

Only two (α_2-4 and α_2-5) of the six normal α_1 globulins were found in the sera from three guinea pigs bled 21 days after infection. Comparison of the precipitate density between normal and post-inoculation sera from these same guinea pigs suggested that α_2-4 was present in approximately normal amounts, whereas α_2-5 was increased in all three sera. The α_{21}-T antigen was found in all three sera. There was a depletion of the most cathodic constituents of β_2-4 which shortened the posterior aspect of its precipitate in all three serum immunoelectrophoretograms.

No consistent variation in the α_1 globulins was observed in the immunoelectrophoretic patterns of sera collected at 28, 33, and 41 days after infection. The α_{12}-T antigen was found in all of these sera. Composite immunoelectrophoretograms of normal sera and sera collected during the terminal stages of tuberculosis are shown in Fig. 2.

Serum protein changes after sensitization with heat-killed M. bovis. Cellulose acetate membrane electrophoresis and immunoelectrophoresis of sera from 12 adult male tuberculin-sensitive guinea pigs revealed no consistent differences when compared with their respective normal sera (Fig. 4). Hyper-γ-globulinaemia was found in one guinea pig bled after 15 days and in all four guinea pigs bled 21 days after sensitization.

Discussion

This study dealt with the serial changes in the serum proteins of guinea pigs infected with *M. bovis* and guinea pigs sensitized with heat-killed *M. bovis*.

Fulminating infection was produced in guinea pigs by inoculating 0.01 mg (wet weight) of *M. bovis* intraperitoneally. However, no changes in the electrophoretic or immunoelectrophoretic pattern of the serum proteins were found in the sera collected 1 week after infection.

The most striking and consistent changes occurred among the α_2 globulins. Hyper-α-globulinaemia was first detected 14 days after inoculation, and was found in all of the infected guinea pigs thereafter. Coincident with this change was the detection of an antigenic α_2 globulin in the serum immunoelectrophoretograms of all but one of the infected guinea pigs. This antigen has been tentatively named α_2-T. It has not been found in sera from 80 uninfected guinea pigs or in guinea pigs sensitized with heat-killed cells. However, α_2-T is present in normal serum, since the antisera with which it was resolved were elicited by normal guinea pig sera. Therefore, it appears that the production of α_2-T is greatly
stimulated between the 8th and 14th days after infection with *M. bovis*, and persists until death of the animal.

Some of the properties of α_2-T can be inferred from its behavior during immunoelectrophoresis. It is a complete antigen which migrates with the α_2 globulins during electrophoresis in agar-gel. Since it is stained by carbohydrate-specific but not lipid-specific stains, it appears to be a glycoprotein. It forms a dense symetrically curved precipitate with its apex near the edge of the antiserum basin. Therefore, it is probably not a macroglobulin, and it is present in relatively high concentration in the sera of tuberculous guinea pigs.

The simultaneous detection of α_2-T and hyper-α-globulinemia in the same sera suggests that the latter, a fairly consistent finding in advanced tuberculosis in many species, including man, may be caused by an increase in the serum concentration of α_2-T. However, since both of these changes were detected by electrophoresis in different supporting media, it must be assumed that α_2-T migrates as an α_2 globulin in cellulose acetate as well as in agar-gel. That the mobility of certain proteins can be quite different in these two media is shown by the fact that the major guinea pig serum lipoproteins migrate as β globulins on cellulose acetate and as α globulins in agar-gel. Therefore, it cannot be concluded that the eleva-
tion in the serum concentration of α_1-T caused the hyper-α-globulinemia. The temporal relationship that exists between these events, however, suggests this possibility.

Cellulose acetate electrophoresis and immunoelectrophoresis of sera from 12 guinea pigs that were sensitized to tuberculin with heat-killed *M. bovis* did not reveal either hyper-α-globulinemia or α_1-T. This suggests that both of these serum changes were dependent on the disease process and not on the development of delayed tuberculin hypersensitivity.

ACKNOWLEDGMENT

This investigation was supported by the Animal Disease and Parasite Research Division, Agricultural Research Service, U.S. Department of Agriculture.

LITERATURE CITED