Immunological Studies on Dermatophytes

II. Serological Reactivities of Mannans Prepared from Galactomannans I and II of *Microsporum quinckeanum*, *Trichophyton granulosum*, *Trichophyton interdigitale*, *Trichophyton rubrum*, and *Trichophyton schoenleinii*

SARAH F. GRAPPEL, F. BLANK, AND C. T. BISHOP

Skin and Cancer Hospital, Temple University, Health Sciences Center, Philadelphia, Pennsylvania 19140, and National Research Council, Ottawa, Ontario, Canada

Received for publication 30 December 1967

The contribution of terminal galactofuranose residues to the antigenic specificity and to cross-reactivity of galactomannans isolated from five species of dermatophytes, *Microsporum quinckeanum*, *Trichophyton granulosum*, *T. interdigitale*, *T. rubrum*, and *T. schoenleinii*, was investigated. Galactofuranose units were removed from galactomannans I and galactomannans II by mild acid hydrolysis. The resulting mannans were tested for serological reactivity with rabbit antiserum to *M. quinckeanum* by qualitative precipitation in gel and by quantitative complement-fixation analyses. Our results showed that, with this antiserum, the galactofuranose residues contributed greatly to the antigenic specificity and to cross-reactivity of the galactomannans II, but these residues were less significant as antigenic determinants in the galactomannans I. We have shown that mannans isolated from three *Candida* species reacted with rabbit antiserum to *M. quinckeanum*.

Results

Reactions of mannans prepared from galactomannans I and II with rabbit antiserum to *M. quinckeanum*. The reactions of mannans I and mannans II with rabbit antiserum to *M. quinckeanum* were examined by gel diffusion analyses. Each of the mannans I gave precipitin bands that appeared identical with the band obtained with galactomannan I of *M. quinckeanum* (Fig. 2). The bands obtained with the mannans II seemed identical with each other, but these bands differed in intensity—*T. rubrum* mannan II was the weakest (Fig. 3). The galactomannan II of *M. quinckeanum* showed spur formation with the mannans II. This indicated that some antigenic determinants which were on the galactomannans II were no longer present in the mannans II prepared from them.

Quantitative analysis of the serological reactivities of mannans I and mannans II by complement fixation with whole rabbit antiserum to *M. quinckeanum*. As given in Table 1, the reactivities of the mannans I were quite similar to those of the galactomannans I (7). The mannan I from *T. schoenleinii* was the least reactive. The mannan I of *M. quinckeanum* was even more reactive than the parent galactomannan I. However, mannans II were less reactive than their...
IMMUNOLOGICAL STUDIES ON DERMATOPHYTES

Dermatophytes

Galactomannans I

Glucans

Galactomannans II

Mannan I

(Trichophyton rubrum)

Partial acid hydrolysis

(0.025 N oxalic acid, 97 C)

Mannans I

Partial acid hydrolysis

(0.025 N oxalic acid, 97 C)

Mannans II

FIG. 1. Preparation of the mannans.

parent galactomannans II; T. rubrum mannann II was the least reactive (7).

Complement-fixation analysis of the serological reactivities of mannans I with antiserum absorbed with galactomannan II and mannans II with antiserum absorbed with galactomannan I of M. quinckeaneum. Table 1 summarizes the relative reactivities of these polysaccharides. The galactomannan I of M. quinckeaneum reacted well with antiserum absorbed with galactomannan II. However, the reactivities of the mannans I with antiserum absorbed with galactomannan II were decreased, except for the mannann isolated from T. rubrum. The mannann I from T. schoenleinii was the least reactive. The relative reactivities of these polysaccharides with this absorbed antiserum did not differ significantly from those obtained with whole rabbit antiserum.

The reactivities of the mannans II were diminished when antiserum absorbed with galactomannan I was used. Larger amounts of each were required for fixation of complement. Compared with the other four mannans II, the relative reactivity of the homologous mannann II varied considerably from that measured with whole antiserum. A cross-reaction between mannans II and antibody specific for galactomannan I or for mannann I of M. quinckeaneum seemed possible.

FIG. 2. Immunodiffusion analysis of mannans I. Center well: Rabbit antiserum to Microsporum quinckeaneum. Periphery: galactomannan I, M. quinckeaneum (1); mannann I, M. quinckeaneum (2); mannann I, Trichophyton granulosum (3); mannann I, T. interdigitale (4); mannann I, T. rubrum (5); and mannann I, T. schoenleinii (6). Concentration of polysaccharides is 100 µg/ml.

FIG. 3. Immunodiffusion analysis of mannans II. Center well: rabbit antiserum to Microsporum quinckeaneum. Periphery: galactomannan II, M. quinckeaneum, 100 µg/ml (1); mannann II, M. quinckeaneum (2); mannann II, Trichophyton granulosum (3); mannann II, T. interdigitale (4); mannann II, T. rubrum (5); and mannann II, T. schoenleinii (6). Concentration of polysaccharides is 200 µg/ml.
TABLE 1. Complement-fixation analysis of serological reactivities of mannan I and mannan II with whole rabbit antiserum to Microsporum quinckeaeun, antiserum absorbed with galactomannan I, and antiserum absorbed with galactomannan II

<table>
<thead>
<tr>
<th>Source</th>
<th>Mannan I (µg)</th>
<th>Mannan II (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whole antiserum</td>
<td>Absorbed antiserum</td>
</tr>
<tr>
<td>M. quinckeaeun</td>
<td>.001</td>
<td>0.055</td>
</tr>
<tr>
<td>Trichophyton grandoosum</td>
<td>.003</td>
<td>0.045</td>
</tr>
<tr>
<td>T. interdigitale</td>
<td>.003</td>
<td>0.030</td>
</tr>
<tr>
<td>T. rubrum</td>
<td>.001a</td>
<td>0.005a</td>
</tr>
<tr>
<td>T. schoenleinii</td>
<td>.011</td>
<td>2.00a</td>
</tr>
<tr>
<td>M. quinckeaeun</td>
<td>.002</td>
<td>0.008</td>
</tr>
</tbody>
</table>

* Results are given as the amount of antigen necessary to fix 50% of the guinea pig complement in the system as determined from the reaction curves. The change in optical density at 541 mg, as the difference between the antiserum control and the reaction mixture, was used to measure the amount of guinea pig complement fixed, which is proportional to the amount of antibody present.

* Antiserum (0.2 ml) diluted 1:400 for analysis.

* Antiserum (0.2 ml) absorbed with galactomannan II diluted 1:200 for analysis.

* Antiserum (0.2 ml) absorbed with galactomannan I diluted 1:100 for analysis.

* Antiserum (0.2 ml) diluted 1:500.

* Antiserum (0.2 ml) absorbed with galactomannan II diluted 1:100.

* A mannan I was isolated from T. rubrum.

* No complement fixation.

* In these tests, reactivities of galactomannans I and II, rather than mannans I and II, were determined.

Complement-fixation analysis of the serological reactivities of mannan I with antiserum absorbed with galactomannan I and mannan II with antiserum absorbed with galactomannan II of M. quinckeaeun. Although precipitating antibody to the galactomannan I was no longer detectable after absorption (Table 1), the galactomannan I of M. quinckeaeun still reacted with antiserum absorbed with galactomannan I, owing to the sensitivity of the complement-fixation analysis in determining small amounts of residual antibody to this polysaccharide. However, larger quantities of the mannans I we were required for reactivity with this galactomannan I-absorbed serum than for reactivity with whole serum or serum absorbed with galactomannan II. Only the mannan I prepared from galactomannan I of T. schoenleinii reacted more strongly with this galactomannan I-absorbed serum than with antiserum absorbed with galactomannan II. This mannan I may be cross-reacting with antibody to galactomannan II of M. quinckeaeun.

The antiserum absorbed with galactomannan II of M. quinckeaeun still contained residual antibody to galactomannan II (Table 1). Each of the mannans II, except that from T. rubrum, exhibited a stronger reaction than galactomannan II of M. quinckeaeun with this galactomannan II-absorbed antiserum, and each reacted more strongly than with antiserum absorbed with galactomannan I. These analyses confirmed a cross-reaction between the mannans II and antibody to galactomannan I of M. quinckeaeun.

Analysis of mannans isolated from Candida species as antigens reacting with rabbit antiserum to M. quinckeaeun. Although reactions with this antiserum were not detectable by precipitation in gel, the serological cross-reactivities of these polysaccharides with antiserum to M. quinckeaeun could be measured by complement-fixation analyses (Table 2). Each of these mannans also reacted with this antiserum following absorption with either galactomannan I or galactomannan II of M. quinckeaeun.

Discussion

The serological reactivities of the mannans I prepared by mild acid hydrolysis of the galactomannans I showed that the galactofuranoside units contributed little to the cross-reactivity of galactomannans I with antiserum to M. quinckeaeun. Galactomannan I of T. schoenleinii was apparently an exception; removal of the galactofuranoside units decreased its...
reactivity. In contrast, the galactofuranoside units contributed greatly to the specificity and cross-reactivities of the galactomannans II. These results are not surprising because of the relative amounts of galactofuranoside units in these two groups of polysaccharides. The galactomannans II contained considerably more galactofuranoside units (23 to 29%); these units measured only 0 to 18% in the galactomannans I (3, 4). Antibodies to galactomannans II should therefore have a greater proportion of active sites directed toward galactofuranoside groups. In the galactomannans I, apparently the structural feature responsible for the serological reactivities is the linear sequence of 1→6 linked mannopyranose units that predominate in this group of polysaccharides.

Absorption of antibodies to galactomannan II of *M. quinckeana* from this antiserum did not affect the serological reactivities of the galactomannans I nor did absorption of antibodies to galactomannans I influence the reactivities of the galactomannans II (7). However, in our investigation, reactivities of mannans II were decreased with antiserum absorbed with galactomannan I, and the reactivity of *M. quinckeana* mannan II, relative to the others, was not the same as with the whole antiserum (Table 1). These results can be explained in terms of the structures of the polysaccharides. It is known (3, 4) that the galactomannans II could contain some monosaccharide units joined as shown in the partial structure in Fig. 4. Removal of the galactofuranoside groups apparently would expose additional linear 1→6 linked d-mannopyranose units. An increase in the number of those units in the galactomannans II would account for the cross-reactivity with antibody to galactomannans I because a linear chain of 1→6 linked d-mannopyranose units is the predominant structural feature of the galactomannans I. It has been postulated (7) that a variation in the sequence of 1→2 and 1→6 linkages in the linear portions of the galactomannans II could be responsible for the variations in serological reactivities within that group. The exposure of additional 1→6 linkages by removal of galactofuranoside groups from the galactomannans II would alter the sequences of 1→2, 1→6 linkages and could thus explain the different relative reactivities of the mannans II, as compared to the galactomannans II (7).

Also, the reactivities of the mannans I were diminished when antiserum absorbed with galactomannan II was used (Table 1); this occurrence indicated a cross-reaction with antibodies to galactomannans II. Therefore, it is likely that removal of galactofuranoside units from the galactomannans I exposed a structural feature that also was present in the galactomannans II. This structural feature could well be a linear 1→2 linkage. Unlike the galactomannans II, the galactomannans I contained no linear 1→2 linked d-mannopyranose. But 1→2 linkages were involved in the promotion of branch points in the galactomannans I, and if galactofuranoside units formed one or more of the branches, then removal would expose some linear 1→2 linkages. The mannans I cross-

Table 2. Complement-fixation analysis of mannans from Candida species as antigens reacting with rabbit antiserum to Microsporum quinckeana*

<table>
<thead>
<tr>
<th>Source of polysaccharide</th>
<th>Amount of mannan (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>2.00</td>
</tr>
<tr>
<td>C. stellatoidea</td>
<td>1.58</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.258</td>
</tr>
<tr>
<td>M. quinckeana</td>
<td></td>
</tr>
<tr>
<td>Mannan P</td>
<td><0.005</td>
</tr>
</tbody>
</table>

*a Reactivity given as amount of mannan necessary for 90% fixation of complement in system; for analyses, 0.2 ml of whole antiserum diluted to 1:100 was used.

*b Mannan II was not included in the analysis.

Fig. 4. Exposure of linear 1→6 linkages by removal of galactofuranoside units from galactomannan II.
reacted with antibody to galactomannan II of *M. quinckeae*unum to a lesser extent than did the mannans II with antibody to galactomannan I because the galactomannans I contained fewer galactofuranose units than did the galactomannans II. Thus, removal of the galactofuranose units from galactomannans I would expose fewer new linear linkages than would be revealed by a similar process in the galactomannans II.

The mannans from three *Candida* species demonstrated cross-reactivity with the antiserum used in this study. Those mannans should therefore have some structural features in common with the galactomannans of the dermatophytes. The predominant structural feature of the *Candida* mannans is a linear chain of 1 → 2 linked α-D-mannopyranose units (8). Also, such units are present in the galactomannans II of the dermatophytes; this occurrence is probably an explanation for the observed cross-reactivity.

Acknowledgments

This investigation was supported by a grant from The John A. Hartford Foundation, Inc., New York, N.Y. We thank Joyce Caruno and Carol A. Buscavage for their technical assistance.

Literature Cited

