The Complete Genome Sequence of *Bacillus thuringiensis* Al Hakam

§DOE Joint Genome Institute Los Alamos National Laboratory, Los Alamos, NM 87545.

‡DOE Joint Genome Institute Production Genome Facility, Walnut Creek, CA 94598.

¶Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545.

#Lawrence Berkeley National Laboratory, Berkeley, CA 94720. ΦLawrence Livermore National Laboratory, Livermore, CA 94550. ψLos Alamos National Laboratory Decision Applications Division, Los Alamos, NM 87545. & Northern Arizona University Department of Biological Sciences, Flagstaff AZ 86011-5640. θLos Alamos National Laboratory, W Division, Los Alamos, NM 87545. + Presently at the Advanced
Biomedical Computing Center, NCI-Frederick, Frederick MD 21702. □Presently at The Center for Biosecurity of UPMC, The Pier IV Building, 621 E. Pratt Street, Suite 210, Baltimore, Maryland 21202. ●Presently at the University of Florida, Gainesville, FL 32611. =Presently at the University of California, San Diego, La Jolla, CA 92093

*Department of Energy Joint Genome Institute Bioscience Division, MS M888
Los Alamos National Laboratory
Los Alamos, NM 87545
Phone: (505) 665-1485
FAX: (505) 665-3024
Email: jchalla@lanl.gov
Abstract

Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (4). Here we report the finished, annotated genome sequence of *B. thuringiensis* Al Hakam, which was collected in Iraq by the United Nations Special Commission (3).

Methods, Results and Discussion

The *Bacillus thuringiensis* Al Hakam genome was sequenced at the Joint Genome Institute (JGI) using plasmid and fosmid DNA libraries. Draft assemblies were based on 246217 total reads. All libraries provided 23x coverage of the genome. The Phred/Phrap/Consed software package (http://www.phrap.com) was used for sequence assembly and quality assessment. After shotgun sequencing, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected by transposon bombing (Epicentre Biotechnologies) of bridging clones. Gaps between contigs were closed by editing in Consed, by custom primer walks, or by PCR amplification. The complete genome of *B. thuringiensis* Al Hakam achieves an average of 24-fold sequence coverage per base with an error rate of less than 1 in 100,000. The sequences comprising the *B. thuringiensis* Al Hakam genome can be accessed using the GenBank accession numbers CP000485 and CP000486.

Gene predictions were obtained and annotation was performed as described previously (1). The 5.31 Mb genome of *B. thuringiensis* Al Hakam contains two replicons: a circular chromosome (5.26 Mb) encoding a predicted 4969 ORFs, and the pALH1 circular phage, which contains 62 predicted ORFs. The G+C content of the chromosome is 35%, while that of the phage is 36%. The *B. thuringiensis* Al Hakam
genome encodes 105 tRNAs, 13 rRNA operons, and contains at least 21 pseudogenes. There were no additional plasmids identified in the assembly. Blast searches against the
B. thuringiensis Al Hakam genome using known insecticidal genes (*cry*, *cyt* and *vip*) as queries revealed no chromosomally (or phage) encoded ORFs with significant similarity. Therefore, we conclude that this genome contains no homologues of the known *cry*, *cyt* or *vip* genes. However, if they were present originally, it is possible that the plasmid(s) encoding these genes was lost during culture.

Previous AFLP analyses have shown that *B. thuringiensis* Al Hakam is phylogenetically more closely related to *B. anthracis* and other "Branch F" *Bacillus* isolates than to many of the commercially important *B. thuringiensis* isolates (2). The *B. thuringiensis* Al Hakam genome provides new sequence data that can be used to further study the evolutionary relationships among *B. cereus* group organisms.

We acknowledge the Intelligence Technology Innovation Center and the DOE Chemical and Biological Non-Proliferation Program for funding the sequencing and analysis of this genome.

REFERENCES

Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 188:3382-3390.

