Submission to Journal of Bacteriology
Section: Genome Announcement

Genome Sequence of Leuconostoc inhae KCTC 3774
Isolated from Kimchi

Dae-Soo Kim†, Sang-Haeng Choi†, Dong-Wook Kim¹, Ryong Nam Kim³, Seong-Hyeuk Nam¹,
Aram Kang¹,², Aeri Kim¹,², Hong-Seog Park¹,²*

¹Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIIBB),
111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
²University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon 305-806,
Republic of Korea

*Corresponding author:
Mailing address: Genome Resource Center, Korea Research Institute of Bioscience and
Biotechnology (KRIIBB), 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
Phone: (82)-42-879-8133; Fax: (82)-42-879-8139; E-mail: hspark@kribb.re.kr

†The first two authors contributed equally to this work.
Abstract

The *Leuconostoc inhae* KCTC 3774 strain is a gram-positive, non-spore-forming, heterofermentative, spherical or lenticular lactic acid bacteria. Here we announce the draft genome sequence of *Leuconostoc inhae* KCTC 3774, isolated from traditional Korean kimchi and describe major findings from its annotation.
The fermentation of kimchi, a traditional Korean food, is initiated by various microbes originating from raw materials and the environment (4, 6, 11). Taxonomically diverse groups of lactic acid bacteria have been found during the fermentation process. Some important species responsible for the fermentation of kimchi are Leuconostocs such as L. mesenteroides, L. pseudomesenteroides and L. lactis, as well as Lactobacilli including L. brevis and L. plantarum (7, 10, 11).

The strain *Leuconostoc inhae* KCTC 3774, known to be present in kimchi (7, 8) based upon the Korean Collection for Type Cultures, was grown under standard conditions (Lactobacilli MRS Broth, 30°C and 200 rpm). Genomic DNA was extracted from the cultured bacteria using the alkaline lysis method (3). In this report, we present the draft genome sequence of the strain *Leuconostoc inhae* KCTC 3774 consisting of 983 contigs. Whole genome shotgun strategy using Roche 454 GS Titanium pyrosequencing was performed by the Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology. The identified genome sequences were processed with Roche’s software according to the manufacturer’s instructions. Quality filtered reads assembled *in silico* using the 454 Newbler assembler version 2.3 provided 983 contigs >100 base pairs (bp) in size; 63 of which were > 10,000 bp. Open reading frames (ORFs), predicted using the Glimmer 3.02 modeling software package (5) and RNAmmer 1.2 (9), were searched using Clusters of Orthologous Groups (COG) databases (12). The draft genome sequence was also uploaded into the RAST (Rapid Annotation using Subsystem Technology) server to check the annotated sequences and screen for non-coding rRNAs and tRNAs. All the data mining steps mentioned were carried out automatically with our rational database driven tools written in python scripts.

The percentage of GC content in all contigs was 36%. The predicted proteins were
annotated by BLAST (1) and the RAST server (2). A total of 72% (2,020) of the ORFs were
annotatable with known proteins. The genome contained 2,757 protein coding genes, one copy
of the 5S rRNA gene, 47 tRNA genes, and two copies of long subunit-short subunit (LSU-SSU)
ribosomal protein genes. There were 2,807 possible ORFs in 983 contigs with sizes ranging
between 71 and 3,663 bp. There were not many ORFs longer than 2000 bp (only 42); most
were less than 1,500 bp. The genome contains putative permease genes of the major facilitator
superfamily, membrane proteins, transcriptional regulators, glycerophosphoryl diester
phosphodiesterase, and cellobiose-specific IIC components. There are 28 subsystems
represented in the genome. This information was used to reconstruct the metabolic network
(determined using RAST sever). There were many carbohydrates subsystem features, protein
metabolism, and amino acid derivatives, including genes involved in methionine and histidine
biosynthesis, SSU ribosomal bacteria, common pathways for synthesis of aromatic compounds
(DAHP synthase to chorismate), pentose phosphate pathway, beta-glucoside metabolism, fatty
acid biosynthesis, and C21-steroid hormone metabolism. Knowledge regarding the genome
sequence will facilitate additional bioinformatic and experimental investigations intent upon
elucidating the role of carbohydrates and amino acid derivative subsystems in kimchi
fermentation.

Nucleotide sequence accession numbers

The draft genome sequence of Leuconostoc inhae KCTC 3774 is available in GenBank under
the accession number AEMJ00000000.

Acknowledgements

This study was supported by a grant from the Ministry of Education, Science and Technology
(2009-0084206). Sequencing, assembly, annotation, and data analysis were supported by Kun-
Hyang Park and Min-Young Kim.
REFERENCE

