Glutamate Dehydrogenase Affects Resistance to Cell Wall Antibiotics in *Bacillus subtilis*

Yong Heon Lee, Anthony W. Kingston, and John D. Helmann*

Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.

Running title: Contribution of RocG to Cefuroxime Resistance

Keywords: Glutamate dehydrogenase, RocG, *Bacillus subtilis*, Cefuroxime, *yuaFGI*

Corresponding author:

Department of Microbiology,
Wing Hall, Cornell University,
Ithaca, NY 14853-8101, USA
Phone: 607-255-6570
Fax: 607-255-3904
E-mail: jdh9@cornell.edu
ABSTRACT

The glutamate dehydrogenase RocG of *Bacillus subtilis* is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the *rocG* null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin, but resistant mutants arise due to gain-of-function mutations in *gudB*, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ^W^ regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ^W^ controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of *yuaFG* in the *rocG* null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains and we show here that the *yuaFGI* operon contributes to a σ^W^-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ^W^ regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.
INTRODUCTION

In *Bacillus subtilis*, a model system for the Gram-positive bacteria (36), the synthesis of glutamate is catalyzed uniquely by the heterodimeric product of the *gltAB* operon. Glutamate acts as a central metabolite providing the link between carbon and nitrogen metabolism (11, 40). The degradation of glutamate is catalyzed by the strictly catabolic glutamate dehydrogenase RocG (2). In addition to *rocG*, *B. subtilis* has a second glutamate dehydrogenase gene, *gudB*, whose product is cryptic due to an insertion of three amino acids close to the active site of this enzyme. However, null mutants of *rocG* rapidly accumulate spontaneous gain-of-function suppressor mutations in *gudB* that remove the repeat sequence encoding the three amino acid insertion, thereby resulting in the synthesis of active GudB (3, 12).

Recent studies have shown that RocG has a second activity as a regulatory protein. RocG, if glutamate is available, directly interacts with GltC, the transcription activator of the *gltAB* operon, thus inhibiting its activity (10, 15). However, whether it has additional functions remains largely unknown. In addition to RocG, several other bacterial enzymes are now known to regulate gene expression. Some act as transcription factors by direct binding to either DNA or RNA and others modulate the activity of transcription factors either by covalent modification or by protein–protein interactions (9).

Cefuroxime (CEF) belongs to second generation β-lactam cephalosporin antibiotics, with a broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria (31). The mode of action of CEF is conventional: by binding to specific penicillin-binding proteins (PBPs), it inhibits the third and final stage of bacterial cell wall
synthesis. In Gram-negative bacteria such as *Escherichia coli*, CEF shows high affinity for
PBP3 (35). β-lactams such as CEF are also known to exert their toxicity, at least in part, by
generating reactive oxygen species (14, 22).

Three major mechanisms have been proposed for bacterial resistance to β-lactam
antibiotics. The most common mechanism is the production of β-lactam-degrading
enzymes (β-lactamases) which are widely disseminated amongst bacteria. The second
mechanism, well studied in Gram-positive *Staphylococcal* and *Streptococcal* species, is
alterations in PBPs, resulting in low affinities for β-lactams. The third mechanism is
mediated by efflux pumps which prevent access of the β-lactams to the PBP targets (32, 43).

B. subtilis also exhibits intrinsic resistance to a wide variety of β-lactams including CEF.
Currently, however, none of these mechanisms have been found to be applicable to *B.
subtilis*. The extracytoplasmic function (ECF) sigma (σ) factors of *B. subtilis* regulate genes
activated by cell wall antibiotics and are known, in several cases, to confer antibiotic
resistance (18). The mechanism of activation by antibiotics is not well understood, but in
the case of σ^W stress activates a proteolytic cascade resulting in release of free σ factor
from a transmembrane anti-σ RssiW (17). A multiply mutant *B. subtilis* strain lacking all
seven ECF sigma factors (σ^M, σ^X, σ^W, σ^Y, σ^Z and σ^YlaC) has an increased sensitivity to
β-lactams including CEF. A similar sensitivity was noted for a triple mutant strain lacking
σ^M, σ^W, and σ^X (28).

Here we address the influence of glutamate dehydrogenase activity on CEF
resistance in *B. subtilis*. We were motivated by the serendipitous observation that rocG null
mutant strains displayed an enhanced sensitivity to CEF. Our results demonstrate that
glutamate dehydrogenase affects the activity of the ECF σ factor, σW. Of the ~60 genes in the σW regulon, we identify the yuaFGI operon as playing a pivotal role in CEF resistance. Our results reveal an unexpected link between central metabolism and antibiotic resistance.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains used in this study are listed in Table 1. Deletion mutants were constructed by replacing genes with antibiotic resistance cassettes using long-flanking homology (LFH) PCR as described previously (30, 39) in *B. subtilis* W168 (BGSC 1A1). Cells were routinely cultured in Luria-Bertani (LB) broth at 37°C with vigorous shaking or on solid LB medium containing 1.5% Bacto agar (Difco). Minimal medium contained 40 mM potassium morpholinepropanesulfonate (MOPS) (adjusted to pH 7.4 with KOH), 2 mM potassium phosphate buffer (pH 7.0), glucose (2%, wt/vol), (NH₄)₂SO₄ (2 g/l), MgSO₄·7H₂O (0.2 g/l), trisodium citrate2H₂O (1 g/l), potassium glutamate (1 g/l), tryptophan (10 mg/l), 3 mM (NH₄)₆Mo₇O₂₄, 400 mM H₃BO₃, 100 µM FeCl₃, 30 nM CoCl₂, 10 nM CuSO₄, 10 nM ZnSO₄, and 80 nM MnCl₂. Difco sporulation medium (DSM) agar was used for spore formation and maintenance of *B. subtilis* strains.

The following antibiotics were used when appropriate: spectinomycin (spec; 100 µg/ml), kanamycin (kan; 15 µg/ml), chloramphenicol (cat; 10 µg/ml) or macrolide-lincosamide-streptogramin B (MLS; contains 1 µg/ml erythromycin and 25 µg/ml lincomycin) for *B. subtilis* strains and ampicillin (100 µg/ml) for *E. coli* DH5α.

Plasmid construction. PCR and cloning for plasmid construction were performed by using standard techniques (34). The primers used in the present study are listed in Table S1.
Ectopic expression of rocG and yuaFG at amyE was placed under the control of isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter Pspac(hy) using plasmid backbone pPL82 (33). For the construction of pYH001 (pPL82-rocG), the promoterless rocG gene was amplified from B. subtilis chromosomal DNA by PCR using the primers, 5395 (rocG Pspac-F)/5396 (rocG Pspac-R). pYH002 (pPL82-yuaFG) was constructed in a similar manner using a pair of primers, 5561 (yuaFG Pspac-F)/5563 (yuaFG Pspac-R). Construct integrity was verified by DNA sequencing. Plasmids were amplified in E. coli DH5α before transformation of B. subtilis strains.

Disk diffusion assays. Disk diffusion assays were performed as described previously (29). Briefly, strains were grown in LB medium to an optical density at 600 nm (OD600) of 0.4. A 100 µl aliquot of these cultures was mixed with 4 ml of 0.7% LB soft agar (kept at 50°C) and directly poured onto LB agar plates (containing 15 ml of 1.5% LB agar). After 30 min at room temperature (to allow the soft agar to solidify), the plates were dried for 20 min in a laminar airflow hood. Filter paper disks containing the antibiotics to be tested were placed on the top of the agar, and the plates were incubated at 37°C overnight. The diameters of the inhibition zones were measured after subtraction of the diameter of the filter paper disk (6.5 mm). The following antibiotics and quantities were used in the disk diffusion assays: penicillin G 100 µg, ampicillin 100 µg, fosfomycin 500 µg, vancomycin 100 µg, and CEF 1 µg or 3 µg.

RNA preparation and microarray analyses. Total RNA was isolated from three biological replicates of W168 and HB13541 (rocG gudB double null mutant) grown in LB to mid-log phase (OD600 of 0.4), using the RNeasy mini kit (Qiagen), followed by DNase
treatment with TURBO DNA free™ (Ambion). The quantity and purity of RNA was determined using a NanoDrop spectrophotometer (Nanodrop Tech. Inc., Wilmington, DE).

cDNA labeling and microarray analysis were performed as described previously (16). Two microarrays were performed in biological triplicates. The GenePix Pro 6.0 software package was used for image processing and analysis. Each expression value is representative of four separate measurements (duplicate spots on each of two arrays). Mean values and standard deviations for the normalized microarray data sets were calculated with MS Excel. The normalized microarray datasets were filtered to remove those genes that were not expressed at levels significantly above background in either condition (sum of mean fluorescence intensity, <20). In addition, the mean and standard deviation of the fluorescence intensities were computed for each gene, and those for which the standard deviation was greater than the mean value were ignored. The fold change was calculated by using the average signal intensities for HB13541 divided by those for W168.

Quantitative real-time RT-PCR. Measurement of transcript abundance was performed by quantitative real-time RT-PCR (qRT–PCR). cDNA was synthesized by using random hexamer primers and Taqman reverse transcription kit (Roche). qRT–PCR was carried out by using SYBR Green (Bio-Rad) and gene-specific primer pairs 5403 (yqeZ qRT-F)/5404 (yqeZ qRT-R) and 5411 (yuaF qRT-F)/5412 (yuaF qRT-R) according to the manufacturer’s instructions. Expression of yuaF and yqeZ was calculated as the fold change based on the CT values for each gene, as described previously (38). The level of 23S rRNA was used as a normalization control.

Fluorescence anisotropy. Fluorescence anisotropy analysis of B. subtilis strains treated
with 1,6-diphenyl-1,3,5-hexatriene (DPH) was performed as described previously (37) with slight modifications. Strains were grown to mid-log phase (OD$_{600}$ of 0.4±0.01) in LB supplemented with 2% xylose. A 0.5 ml sample of each culture was then washed once and suspended in 2 ml of phosphate buffer (100 mM, pH 7.0) containing 5 μM DPH. After a 30 minute incubation at room temperature, fluorescence anisotropy measurements (λ_{ex}=358 nm, slit width =10 nm; λ_{em} =428 nm, slit width =15 nm) were taken with a PerkinElmer LS55 luminescence spectrometer. The correction for the fluorescence intensity of non-labelled cells was calculated according to Kuhry et al. (23).

Microarray data accession number. The microarray data set is available in the NCBI GEO database under accession number GSExxxx.

RESULTS AND DISCUSSION

A rocG null mutant shows increased susceptibility to CEF. We grew *B. subtilis* cells by repeated sub-culturing with selection for increasing resistance to both vancomycin and cephalosporin. In studies to be presented in detail elsewhere, we found that the evolved strains were significantly altered in gene expression as judged by global transcriptome analyses using cDNA microarrays. Of relevance for the present study, the genes up-regulated in the evolved strains included *rocG* encoding the sole catabolic glutamate dehydrogenase in *B. subtilis*. However, mutational inactivation of *rocG* did not affect antibiotic resistance in these resistant strains and the relevant genetic determinants were ultimately determined using whole genome resequencing (data not shown). Although not an important determinant of cephalosporin resistance in these strains, we made the
serendipitous observation that \(rocG \) mutant strains are more sensitive to some cell wall antibiotics in an otherwise wild-type background (Fig. 1A). Here, we define this unexpected link between glutamate dehydrogenase and cephalosporin sensitivity and identify the relevant genetic determinants.

To assess the potential role of \(rocG \) in conferring antibiotic resistance, we constructed an isogenic deletion mutant by homologous recombination in \(B. subtilis \) W168 (BGSC 1A1). Disk diffusion assays showed that disruption of \(rocG \) leads to susceptibility to \(\beta \)-lactams and fosfomycin, but not to vancomycin (Fig. 1A). Although the \(rocG \) mutant is only slightly sensitive to penicillin G and ampicillin, it is notably sensitive to cefuroxime (CEF), a second-generation cephalosporin (Fig. 1B). The \(rocG \) mutant showed a clear inhibition zone, but wild-type was only slightly affected by CEF, suggesting that RocG plays a crucial role in CEF resistance in \(B. subtilis \). Since sensitivity to fosfomycin is less distinct than to CEF, here we focused on identification of genetic factors that confer CEF resistance.

The lack of glutamate dehydrogenase activity influences CEF resistance. The \(rocG \) mutant colonies grown on LB agar plates lyse more easily than wild-type colonies at room temperature. After two weeks, however, many new colonies arise and exhibit no lysis phenotype, eventually sporulating on LB agar plates (Fig. S1, left). Since it is known that \(rocG \) mutant strains rapidly accrue spontaneous gain-of-function mutations (previously designated as \(gudB1 \)) in \(gudB \) which encodes an inactive glutamate dehydrogenase in \(B. subtilis \) 168 strains (3). We therefore expected that this unusual phenotype would be due to mutations in \(gudB \). Using DNA sequencing of \(gudB \), we confirmed that these colonies are...
gudB gain-of-function mutants as previously reported (3) (Fig. S1, right). All of the sequenced colonies had a deletion of one copy of the 9-nucleotide direct repeat in the 5′ coding region of gudB.

To further examine whether the spontaneous gain-of-function mutations in gudB, denoted here as gudB+, suppresses the CEF-sensitive phenotype of a rocG mutant, we performed disk diffusion assays. These mutations restore normal resistance to CEF and similar results were also obtained for fosfomycin resistance (Fig. 2A). Indeed, the rocG gudB+ strain is slightly more resistant to these antibiotics than the wild-type, possibly due to the constitutive expression of gudB (3). To avoid complications due to these suppressor mutations, we constructed a rocG gudB double mutant (HB13541) and used this as a glutamate dehydrogenase-negative strain. Moreover, when rocG expression is placed under control of the P_{spac(hy)} promoter, it complements the CEF-sensitive phenotype of the double mutant (Fig. 2B). Control experiments show that IPTG itself does not reduce CEF sensitivity.

The glutamate dehydrogenase RocG functions not only as a central metabolic enzyme, but also as a regulatory protein by interaction with GltC (10, 15). GudB shares with RocG both a common enzymatic activity and an ability to regulate GltC (3). Thus, the effects of glutamate dehydrogenase on antibiotic resistance could, in principle, be due to the enzymatic activity of the protein or the regulatory function.

CEF arrests the growth of the rocG mutant cells at mid-exponential phase. We next compared the growth behavior of B. subtilis wild-type and rocG gudB double null mutant (ΔrocG ΔgudB) strains in the presence of CEF. CEF was added at the beginning of the
culture and growth was measured spectrophotometrically (optical density at 600 nm) using a Bioscreen C microbial growth analyzer (Growth Curves USA, Piscataway, NJ) at 37°C with vigorous shaking. After reaching mid-exponential phase (OD$_{600}$ ~0.5; which corresponds to about 1 × 108 CFU/ml) the rocG gudB mutant cells exhibit growth arrest in the presence of very low levels of CEF (50 ng/ml) (Fig. 3A).

Glutamate dehydrogenase is required for the catabolism of glutamate, arginine, ornithine, and proline and transcription of rocG is strongly repressed by glucose and other easily metabolized carbon sources (3, 4, 5). Previously, in wild-type cells grown in nutrient broth, the total cellular activity of glutamate dehydrogenase was observed to be low in early exponential phase with higher levels in the later stages of exponential growth (3). Thus, the CEF-induced growth arrest of the rocG gudB mutant appears to occur during the same growth phase when rocG would normally be upregulated. We therefore hypothesized that the CEF-induced growth arrest might be correlated with an inability of the rocG gudB mutant to metabolize alternative carbon sources and, as a corollary, that CEF somehow affects carbon source preferences.

We reasoned that if the growth arrest observed in the presence of CEF is due to a block in catabolism, then cells provided with a more abundant carbon supply should be delayed in growth arrest. Indeed, in 2X LB medium growth impairment (for both WT and the rocG gudB double mutant) occurred at a somewhat higher OD$_{600}$ value (approximately 0.7) relative to LB (Fig. 3B vs. 3A). However, wild-type cells were actually slightly increased in their sensitivity to CEF. We next tested the effects of providing cells with an abundant and easily metabolized carbon source (2% glucose). In LB supplemented with 2%
glucose, both wild-type and the rocG gudB mutant strains exhibit growth arrest, and eventually lysis, in mid-logarithmic phase in the presence of low levels of CEF. Finally, in minimal medium containing 2% glucose, wild-type and mutant strains show similar responses to CEF: both strains show a CEF-dependent growth lag but no longer display growth arrest in mid-logarithmic phase.

These results suggest that glucose-dependent repression of rocG leads even wild-type cells to behave phenotypically as glutamate dehydrogenase mutants. Moreover, simply providing cells with an easily metabolized carbon source is insufficient to bypass the growth arrest. Although the reasons for these media-dependent differences are not entirely clear, these data suggest that CEF-induced growth arrest of the rocG gudB mutant in LB medium is correlated with a need for rocG activation.

Effect of alkaline growth pH on the susceptibility of B. subtilis to CEF. In addition to its role in carbon catabolism, RocG may play a role in pH homeostasis (43). The arginine catabolism (roc) operon has been shown to be upregulated at high pH presumably because arginine breakdown can lead to acidic products that counteract base stress (43). However, in some species arginine catabolism is upregulated at acidic pH. Ammonia (NH₃), generated by glutamate dehydrogenase, can bind a proton (H⁺) leading to an increase in intracellular pH (pHᵢ). During fermentation of amino acids by B. subtilis natto it has been shown that there is substantial ammonia production, much of which is due to glutamate dehydrogenase (20). We therefore reasoned that production of NH₃ by RocG might affect cellular pH and, since cell membranes are permeable to NH₃, also affect extracellular pH (pHₑ). However, no significant differences were observed in pHₑ between the in B. subtilis
wild-type and *rocG gudB* double mutant strains, when measured at several different growth points in LB medium (data not shown).

Next, we examined the effect of alkaline growth pH (conditions known to induce *rocG* expression and the σ^W regulon; 42, 44) on the susceptibility of *B. subtilis* to CEF. The wild-type strain showed a remarkable reduction in susceptibility to CEF under alkaline growth conditions (Fig. 4A). However, as shown in Fig. 4B, the *rocG gudB* double mutant still shows high susceptibility to CEF even in MOPS-buffered LB medium (pH 8.5). Thus, simply raising the pH, in this case with buffer, is not sufficient to prevent growth arrest.

We conclude that the role of RocG important for growth in the presence of low concentrations of CEF is not obviously linked to carbon catabolism, nor to a major role in pH homeostasis. It remains possible that RocG affects intracellular pH or by other means alters cell physiology to help cells resist the deleterious effects of CEF, but determining the mechanism of this connection requires further study.

RocG is positively involved in controlling the expression of the σ^W regulon. In order to better understand the precise molecular mechanism(s) by which RocG exerts its effects on CEF resistance, the gene expression profile (transcriptome) of the *rocG gudB* mutant was assessed using DNA microarrays. The *rocG gudB* double null mutant showed significant changes in gene expression relative to a wild-type strain. Significantly, a regulon-based expression analysis revealed that most of the σ^W regulon (8, 19), which is known to be related to resistance to cell wall antibiotics (18), is downregulated in the *rocG gudB* mutant (Fig. 5A). This is consistent with the observed susceptibility of the *rocG* mutant to fosfomycin (Fig. 1A), since σ^W is required for expression of FosB, the major fosfomycin
Within the σ^W regulon, expression of genes in the $yuaFGI$ and $yqeZyqfAB$ operons were strongly downregulated. In *B. subtilis*, YuaF is a member of the NfeD family with a potential role in maintaining membrane integrity (1), and YuaG (recently renamed FloT) is a putative flotillin-like protein (24, 45). The $yqeZ$ gene encodes a second NfeD family protein, while $yqfA$ encodes another flotillin homologue that has partially redundant functions with YuaG (26). The observed changes in transcript abundance for $yuaF$ [fold change \pm standard deviation (SD) 0.21 ± 0.049] and $yqeZ$ (0.32 ± 0.035) were further confirmed by qRT-PCR analysis ($0.27 \pm 0.078; 0.29 \pm 0.058$, respectively), as shown in Fig. 5B. The qRT–PCR results were in direct agreement with cDNA microarray data.

The $yuaFGI$ operon is a major contributor to σ^W-dependent CEF resistance. To determine the contribution of the σ^W regulon to CEF resistance, disk diffusion assays were performed on LB agar plates (Fig. 6). As predicted, the sigW mutant exhibited increased sensitivity to CEF (Fig. 6A). A survey of σ^W controlled genes for effects on CEF resistance revealed that $yuaFG$ plays a major role in CEF resistance with $yqeZyqfAB$ playing an accessory role (Fig. 6A). We also found that the first two genes in the $yuaFGI$ operon were enough to exert its full effect on CEF resistance (Fig. 6B). These results are also consistent with studies suggesting a functional interaction between the NfeD protein YuaF and the flotillin YuaG (41). However, the $yuaFGI$ operon does not confer fosfomycin resistance (Fig. 6B), consistent with the known involvement of another σ^W target gene, *fosB* (7). Together, these findings suggest that RocG affects CEF resistance by enhancing transcription of the σ^W regulon.
Overexpression of yuaFG in the rocG mutant prevents the growth arrest induced by CEF. To confirm the involvement of the yuaFG genes in CEF resistance, these two genes were placed under the control of an IPTG-inducible promoter and the fusion was integrated ectopically at the amyE locus (amyE::Pspac(hy)-yuaFG) of the yuaFG mutant, the sigW mutant, and the rocG gudB double mutant. We performed disk diffusion assays in the yuaFG and the sigW mutant backgrounds bearing the Pspac(hy)-yuaFG fusion (Fig. 7A). In both strains, induction of yuaFG expression by IPTG (0.1 mM) restored CEF resistance (Fig. 7). These strains also show slightly lower sensitivity to CEF under non-inducing conditions, possibly because the Pspac(hy) promoter has low expression in the absence of IPTG.

We next determined whether the yuaFG genes can rescue the growth arrest induced by CEF in the rocG gudB mutant. Indeed, the rocG gudB mutant carrying the Pspac(hy)-yuaFG fusion showed growth arrest without IPTG induction, but was rescued by induction of YuaFG synthesis (Fig. 7B). These effects occurred in an IPTG concentration-dependent manner, with a maximal effect at 1 mM (data not shown). These results suggest a pivotal role of the yuaFG genes in CEF resistance mediated by σW (and influenced by RocG) in B. subtilis.

The yuaFGI operon reduces membrane fluidity under σW-inducing conditions. To better understand how yuaFGI and yqeZyqfAB contribute to intrinsic CEF resistance, we investigated the influence of these genes on membrane fluidity. Both yuaG and yqfA encode putative flotillin-like proteins that are believed to organize the cell membrane into functional microdomains (1, 26). In addition, σW overexpression has previously been
shown to reduce membrane fluidity by altering expression of fatty acid biosynthesis genes (21). The σ^W-dependent activation of a promoter (P_5) within the fabHaF operon leads to an increase in the proportion of straight chain fatty acids and an increase in overall chain length. Since activation of P_5 accounts for some, but not all, of the σ^W-dependent decrease in membrane fluidity (21), we reasoned that upregulation of yuaFGI and/or yqeZyqfAB might alter membrane fluidity.

Membrane fluidity was assessed by measuring the fluorescence anisotropy of B. subtilis cells labeled with DPH (Fig. 8). Under normal growth conditions, both wild type and yuaFGI knockout cells exhibited similar anisotropy levels. However, when sigW was overexpressed with a xylose-inducible promoter (P_{xyL-sigW}), the resulting increase in anisotropy was significantly lower in the yuaFGI knockout strain than in control cells. Since a higher anisotropy is indicative of a less fluid membrane, these results indicate that expression of the yuaFGI operon reduces membrane fluidity when activated by σ^W. In contrast, deleting yqeZyqfAB had no effect on anisotropy levels, even under sigW-overexpression conditions. The effect of yuaFGI on membrane fluidity is comparable to that of the σ^W-dependent promoter (P_5) within the fabHaF operon (21). In a σ^W overexpression strain lacking both yuaFGI and containing a mutation (P_5*) that abolishes P5 activity (P_{xyL-sigW yuaFGI P_5*}), anisotropy levels were the same as in wild type cells. This demonstrates that both P_5 and yuaFGI function to reduce membrane fluidity and that they are the primary components of the σ^W regulon to do so.

The effect of yuaFGI on membrane fluidity might explain how this operon contributes to CEF resistance. Adjustments in membrane fluidity can influence numerous
properties of the lipid bilayer, such as permeability, protein mobility, and protein-protein interactions (25). However, not all changes in membrane fluidity result in CEF resistance since the P5 inactive strain was not any more susceptible to CEF than the wild-type strain (data not shown). YuaG(FloT) has also been linked to the formation of lipid domains, which have been shown to regulate sporulation, biofilm formation, and other signal transduction pathways (13, 26).

Concluding remarks. Our data demonstrate a previously unidentified regulatory effect of RocG on antibiotic resistance. Although glutamate dehydrogenase is relatively well studied in *B. subtilis*, the effects of glutamate dehydrogenase activity on the cell envelope stress response have thus far remained unknown. The present study indicates that the σW-dependent stress response is the link between RocG activity and CEF resistance. Glutamate dehydrogenase affects expression of the σW regulon, by mechanisms not yet resolved, and thereby contributes to CEF resistance. We specifically demonstrate that overexpression of the σW-regulated yuaFG operon prevents growth arrest of the rocG mutant in the presence of CEF. We also show that expression of yuaFGI operon reduces membrane fluidity under σW-inducing conditions and this protein-based mechanism is additive with a previously described lipid-based pathway (21). These findings suggest YuaFG influences CEF resistance by altering the physical properties of the membrane, but the origins of this effect are presently unclear. YuaFG are thought to help organize membrane microdomains (13, 26) and this could affect the assembly or activity of cell wall biosynthetic complexes known to be targeted by CEF. A future challenge will be to identify how glutamate dehydrogenase affects activity of the σW regulon (and thereby CEF and fosfomycin resistance) and how the
activity of flotillin-like proteins affects cell wall biosynthesis pathways.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Institutes of Health (GM047446) and also supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2009-352-C00118) for Y. H. Lee.

REFERENCES

USA 96:10290-10295.

closest relatives: from genes to cells. ASM Press, Washington, D.C.

TABLE 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Genotype or description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W168</td>
<td>trpC2</td>
<td>BGSC no. 1A1</td>
</tr>
<tr>
<td>HB13528</td>
<td>W168 rocG::spec</td>
<td>LFH PCR with W168</td>
</tr>
<tr>
<td>HB13541</td>
<td>W168 rocG::spec gudB::kan</td>
<td>HB13543 chr DNA with HB13528</td>
</tr>
<tr>
<td>HB13542</td>
<td>W168 rocG::spec gudB+</td>
<td>Gain-of-function mutation in gudB</td>
</tr>
<tr>
<td>HB13545</td>
<td>W168 rocG::spec gudB::kan amyE::P_{amyE}(hy)-rocG (cat)</td>
<td>pYH001 with HB13541</td>
</tr>
<tr>
<td>HB13543</td>
<td>W168 gudB::kan</td>
<td>LFH PCR with W168</td>
</tr>
<tr>
<td>HB6156</td>
<td>CU1065 yuaFGI::kan</td>
<td>6</td>
</tr>
<tr>
<td>HB13159</td>
<td>W168 yuaFGI::kan</td>
<td>HB6156 chr DNA with W168</td>
</tr>
<tr>
<td>HB13547</td>
<td>W168 yuaFG::mls</td>
<td>LFH PCR with W168</td>
</tr>
<tr>
<td>HB13548</td>
<td>W168 yuaGI::mls</td>
<td>LFH PCR with W168</td>
</tr>
<tr>
<td>HB13568</td>
<td>W168 yuat::mls</td>
<td>LFH PCR with W168</td>
</tr>
<tr>
<td>HB5331</td>
<td>CU1065 yqeZygAB::kan</td>
<td>6</td>
</tr>
<tr>
<td>HB13566</td>
<td>W168 yqeZygAB::kan</td>
<td>HB5331 chr DNA with W168</td>
</tr>
<tr>
<td>HB13567</td>
<td>W168 yqeZygAB::kan yuaFG::mls</td>
<td>HB5331 chr DNA with HB13547</td>
</tr>
<tr>
<td>HB10102</td>
<td>168 sigW::mls</td>
<td>27</td>
</tr>
<tr>
<td>HB13549</td>
<td>W168 sigW::mls</td>
<td>HB10102 chr DNA with W168</td>
</tr>
<tr>
<td>HB6208</td>
<td>W168 sigW::spec</td>
<td></td>
</tr>
<tr>
<td>HB13558</td>
<td>W168 sigW::spec yuaFG::mls</td>
<td>HB6208 chr DNA with HB13547</td>
</tr>
<tr>
<td>HB13557</td>
<td>W168 sigW::mls rocG::spec gudB::kan</td>
<td>HB13549 chr DNA with HB13541</td>
</tr>
<tr>
<td>HB13571</td>
<td>W168 yuaFG::mls amyE::P_{amyE}(hy)-yuaFG (cat)</td>
<td>PYH002 with HB13547</td>
</tr>
<tr>
<td>HB13572</td>
<td>W168 rocG::spec gudB::kan amyE::P_{amyE}(hy)-yuaFG (cat)</td>
<td>PYH002 with HB13541</td>
</tr>
<tr>
<td>HB13574</td>
<td>W168 sigW::mls amyE::P_{amyE}(hy)-yuaFG (cat)</td>
<td>PYH002 with HB13549</td>
</tr>
<tr>
<td>HB13042</td>
<td>W168 amyE::P_{sigW} (cat)</td>
<td>21</td>
</tr>
<tr>
<td>HB13122</td>
<td>W168 P_{faFabHaFyFab}::P_{amyE}(hy)-amyE::P_{faFabHaFyFab} (cat)</td>
<td>HB6156 chr DNA with HB13042</td>
</tr>
<tr>
<td>HB13160</td>
<td>W168 yuaFG::kan amyE::P_{sigW} (cat)</td>
<td>HB6156 chr DNA with HB13122</td>
</tr>
<tr>
<td>HB13226</td>
<td>W168 P_{faFabHaFyFab}::P_{amyE}(hy)-amyE::P_{sigW} (cat)</td>
<td>HB13546 chr DNA with HB13042</td>
</tr>
<tr>
<td>HB13236</td>
<td>W168 yqeZygAB::kan amyE::P_{sigW} (cat)</td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pPL82</td>
<td>IPTG-inducible expression vector (amyE integration)</td>
<td>33</td>
</tr>
<tr>
<td>pYH001</td>
<td>P_{amyE}(hy)-rocG in pPL82</td>
<td>This study</td>
</tr>
<tr>
<td>PYH002</td>
<td>P_{amyE}(hy)-yuaFG in pPL82</td>
<td>This study</td>
</tr>
</tbody>
</table>

LFH PCR (29, 38) was used to construct deletions using the primers listed in Table S1.

FIGURE LEGENDS
FIG. 1. Disk diffusion susceptibility testing of the rocG mutant with several antibiotics affecting cell wall biosynthesis. (A) The rocG mutant is sensitive to fosfomycin, and slightly sensitive to penicillin G and ampicillin. (B) Disruption of rocG markedly increases sensitivity to CEF (1 µg). Each bar represents the average zone of inhibition, expressed as total diameter minus diameter of the filter paper disk (6.5 mm). At least three assays were performed with three independent clones of each strain. Error bars indicate the standard deviations.

FIG. 2. CEF resistance is distinctly influenced by the glutamate dehydrogenase activity. (A) Sensitivity to CEF and fosfomycin was determined by using disk diffusion assays. The spontaneous gain-of-function mutations in gudB restore normal resistance to these two antibiotics. (B) Induction of the rocG gene by IPTG (1 mM) complements the CEF-sensitive phenotype. Three independent experiments were performed for each strain, and the standard deviation is indicated by error bars.

FIG. 3. Mid-exponential phase rocG mutant cells exhibit growth arrest in the presence of CEF. (A) The effect of CEF on the growth of the rocG gudB mutant. CEF (50 ng/ml) was added at the beginning of the culture. Liquid growth assays were performed in LB medium using a Bioscreen C growth analyzer. To determine CFU/ml, viable cell counts were estimated by plating diluted cultures on LB agar plates. Three independent experiments were averaged, and the standard deviation is indicated by error bars. (B)
Effects of different culture media on the CEF-induced growth arrest of the rocG gudB mutant. Strains were grown in 2X LB, LB supplemented with 2% glucose, and glucose (2%) minimal medium in the presence or absence of CEF. Data depicted are representative of at least three independent experiments.

FIG. 4. Effect of external alkaline pH on the susceptibility of wild-type (A) and rocG gudB mutant (B) strains of B. subtilis to CEF. Liquid growth assays were performed in LB medium (normal) or LB medium buffered with MOPS (pH 8.5) using a Bioscreen C growth analyzer. CEF was added at the beginning of the culture. A representative data set is shown.

FIG. 5. A rocG null mutant displays decreased expression of the σ^w regulon. (A) Gene expression variation as measured by cDNA microarray analysis under non-stress conditions. RNA was extracted from cells grown in LB medium to an OD_{600} of 0.4. Black triangles indicate the σ^w regulon genes. (B) Quantitative real-time RT-PCR analysis of yufA and yqeZ expression. Data were expressed as fold change relative to wild-type cells. The level of 23S rRNA was used as a normalization control. Three independent experiments were performed for each gene, and the standard deviation is indicated by error bars.

FIG. 6. A survey of the σ^w regulon identifies yufFGI as a major determinant of CEF resistance. The CEF sensitivity was determined by disk diffusion assay, which was performed on LB agar plates with a filter paper disk containing 3 µg CEF. (A) Detailed
identification of genes conferring CEF resistance in the \textit{yuaFGI} operon, and determination of fosfomycin sensitivity. (B) Involvement of the σ^W regulon in RocG-mediated CEF resistance. Three independent experiments were performed for each strain, and the standard deviation is indicated by error bars.

\textbf{FIG. 7.} \textit{yuaFG} overexpression by IPTG induction rescues the CEF-sensitive phenotype. (A) Induction of \textit{yuaFG} expression by IPTG (0.1 mM) restores CEF resistance in the \textit{yuaFG} mutant and the \textit{sigW} mutant. Three independent experiments were performed for each strain, and the standard deviation is indicated by error bars. (B) IPTG-dependent induction of \textit{yuaFG} prevents the growth arrest of \textit{rocG} mutant cells. Maximal effect was observed at a final concentration of 1 mM IPTG. Liquid growth assays were performed in LB medium using a Bioscreen C growth analyzer. A representative data set is shown.

\textbf{FIG. 8.} Inactivation of \textit{yuaFGI} prevents the decrease in membrane fluidity induced by overexpression of σ^W. Cells were grown in LB medium with xylose (2%) to an OD$_{600}$ of 0.4, and then incubated in phosphate buffer (100 mM, pH 7.0) with DPH (5 µM) at 25°C for 30 min. In strains containing the $P_{\text{xylose}}\text{-sigW}$ construct, σ^W was expressed under the control of a xylose-inducible promoter. The membrane fluidity of each strain was determined via fluorescence anisotropy measurements. Data are presented as the average of at least three trials, and the standard error is indicated by error bars.
FIG. 3

A

Time (h)

OD600nm

W168

ΔrocG ΔgudB

W168 + 50 ng/ml CEF

ΔrocG ΔgudB + 50 ng/ml CEF

~1×10^8 CFU/ml

B

W168

ΔrocG ΔgudB

2X LB

0 ng/ml

50 ng/ml

100 ng/ml

LB+2% glucose

Minimal

Time (h)
FIG. 6

A

Zone of inhibition (mm)

W168
ΔtacG ΔyuaB
ΔsigW
ΔtacG ΔyuaB ΔsigW
ΔyuaFG
ΔyuaFG ΔyuaZyfAB
ΔyuaFG ΔyuaZyfAB

B

Cefuroxime
Fosfomycin

Zone of inhibition (mm)

W168
ΔyuaFG
ΔyuaFG
ΔyuaFG
ΔyuaFG
ΔyuaFG
ΔyuaFG
FIG. 7

A

Zone of inhibition (mm)

<table>
<thead>
<tr>
<th></th>
<th>W168</th>
<th>ΔyuaFG</th>
<th>ΔsigW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pspac(hy)-yuaFG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPTG (0.1mM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

- W168
- ΔrocG ΔgudB

ΔrocG ΔgudB amylE :: Pspac(hy)-yuaFG

- 0 mM IPTG
- 1 mM IPTG