Factors limiting SOS expression in log phase cells in *Escherichia coli*

Shawn C. Massoni, Michael C. Leeson, Jarukit Edward Long, Kristin Gemme, Alice Mui and Steven J. Sandler

Department of Microbiology
Morrill Science Center IV N203
University of Massachusetts at Amherst
Amherst, MA 01003

Running title: Mechanistic requirements of SOS in *radA* mutants

Keywords: SOS Response, homologous recombination, DNA repair, DNA replication

* Corresponding author:
Telephone Number: (413)-577-4391
FAX Number: (413)-545-1578
e-mail: sandler@microbio.umass.edu
ABSTRACT

In *E. coli*, RecA-ssDNA filaments catalyze DNA repair, recombination and induction of the SOS response. It has been shown that while many (15-25%) log phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA’s ability to induce SOS expression in log phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting *radA* (important for resolution of recombination structures) and increasing *recA* transcription 2-3 fold with a *recAo1403* operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to cells with RecA-GFP foci. In an *xthA* (Exonuclease III) mutant where there are 3-fold more RecA loading events, *recX* (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equal the percentage with at least one RecA-GFP focus (83%). It is proposed that in the *xthA* mutant, there are three independent mechanisms that repress SOS expression in log phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and destabilization of RecA filaments by RecX. Only the former two mechanisms operate independently in a wild type cell.
INTRODUCTION

Regulation of DNA transactions is critical to the maintenance and duplication of chromosomes in all organisms. Any operation to a chromosome involving DNA replication or recombination must be precise and accurate or genetic information will be altered. Homologous recombination plays important roles in helping to repair broken replication forks and other types of DNA damage in an error-free manner (14). RadA, RecA and RAD51 (homologs in Archaea, Bacteria, and Eucarya, respectively) participate in these functions through their ability to form a structurally similar protein-DNA helical filament (6, 57, 59, 73). The abilities of RecA to catalyze repair and recombination and induce the SOS response all stem from the ability of RecA to form a nucleoprotein filament (29, 39). The regulation of this protein-DNA filament is extremely important as it has been shown that too much or too little recombination can be detrimental to an organism (30, 48).

As mentioned above, in E. coli and other bacteria (21) the RecA-DNA filament also plays a key role as regulator of the SOS response ((32) and reviewed in (34, 68)). RecA initiates the SOS response by polymerizing on ssDNA produced by the processing of DNA damage. This RecA-DNA filament is an allosteric effector of LexA auto-proteolysis (33, 49). Depletion of the LexA repressor increases transcription of at least 40 genes that help repair and mutagenize the DNA and inhibit cell division (10).

RecA-dependent homologous recombination occurs minimally in about 15% of log phase cells. This is based on the analysis of hybrid dif sites (61). Since there is a bias in the resolution of Holliday structures that are formed as a result of broken replication forks to the non-crossover configuration, this percentage could be higher (15, 65). An
independent method to assess the number of recA loading events using RecA-GFP foci indicated that approximately 13% of exponential phase cells grown in minimal medium have RecA structures (52). It is thought that the recombination/loading event identified by hybrid sites and the RecA-GFP foci represent places where RecA is binding to and helping to repair broken replication forks. However, in the absence of externally applied DNA damage, about 1% of a log phase population of cells is induced for SOS expression (41, 46). Similar patterns of RecA-GFP foci production and the lack of corresponding SOS expression has also been seen in Bacillus subtilis (3). Given the discrepancy between the percentage of cells with evidence of RecA-mediated recombination and the percentage of cells expressing SOS, it is hypothesized that the ability of the RecA filaments at broken forks or other sites of internal damage to induce SOS is repressed. The rationale for a specific mechanism for this repression is that the cell would prefer not to invoke some of the more dire consequences of SOS induction, such as increased expression of mutagenic polymerases, if it is repairing normal, housekeeping types of DNA damage. In the current work, we address this hypothesis by determining what factors may contribute to the repression of SOS induction at these housekeeping RecA filaments.

SOS is induced when the LexA repressor interacts with the RecA-DNA filament and its rate of auto-proteolysis is increased (33). Electron-micrographic studies suggest that LexA binds in the groove of the RecA-DNA filament (72). Biochemical studies showing that LexA competes with duplex DNA to bind a RecA-ssDNA filament suggest there is a competition between the ability to do recombination and induce the SOS response (25, 51, 72). If the interaction of the LexA protein with a filament is rate
limiting, then increasing the length, amount and/or stability of the filament is likely to increase the likelihood of interactions with LexA and production of an SOS response.

RecA’s activity is controlled at several levels. As first proposed by Mount (43), recA is transcriptionally regulated by lexA as part of the SOS response (reviewed in (22)). Exponentially grown cells are estimated to have about 15,000 molecules of RecA (62) and this level can increase 10-fold during an SOS response (11). RecA requires either RecFOR or RecBCD to load onto gapped DNA and at the ends of dsDNA, respectively (reviewed in (47)). DinI, RecX, UvrD, RdgC, PsiB and RecOR have been shown to affect the stability of the RecA-ssDNA filament either in vivo, in vitro or both (reviewed in (13)). It is known that RecA filaments are dynamic. Subunits can add to either end with a net addition to the 3' end or a net dissociation from the 5' end ((5, 23, 31) and reviewed in (13)). RecX is known to destabilize RecA filaments by capping the 3' end of the growing filament preventing further additions (19, 20, 50, 66). Other proteins such as Exonuclease III (XthA) have been shown to indirectly affect RecA-GFP foci formation as they degrade substrates that RecA could potentially bind (8).

Recent studies have analyzed recA mutants constitutive for SOS in the absence of external DNA damage (i.e., recA4142) and characterized the requirements for this SOS expression (35, 36). It was found that SOS expression in recA4142 (F217Y) mutants was dependent on its initial level of transcription, recBCD, ruvAB, recJ and xonA. The data is consistent with the model that loading of RecA4142 occurs at reversed replication forks (35). Furthermore, it was found that recX and xthA repressed the level of SOS constitutive expression in the recA4142 mutant (36).
Since constitutive SOS expression in \textit{recA4142} requires \textit{ruvAB}, it is possible that it additionally requires other proteins involved in processing RecA-mediated recombinational intermediates. \textit{radA(sms)} was originally isolated for its role in radiation resistance in \textit{E. coli} (18). Further studies of \textit{radA} mutants have revealed a genetic redundancy with \textit{recG} and \textit{ruvABC} suggesting a role for RadA in the stabilization or processing of branched DNA or blocked forks (2, 38, 63).

In the current work, three independent factors are identified that repress SOS expression in log phase cells of \textit{Escherichia coli}. These are \textit{radA}, the concentration of RecA in the cell and \textit{recX}. The former two limit SOS expression in wild type log phase cells in the absence of external DNA damage and the third is needed additionally in \textit{xthA} mutants, possibly because there are more RecA-loading events. It is hypothesized that these factors may change the character of the RecA filament and or reduce the half-life of RecA filaments in the cell, limiting the time it is available to interact with LexA and induce SOS expression. It is additionally shown that the ability of RadA to repress SOS expression is situation-dependent as overproduction of RadA represses SOS constitutive expression in a \textit{recA4142} mutant but has no effect on SOS expression after UV irradiation in a wild type cell.

MATERIALS and METHODS

Strains and Media. All bacterial strains are derivatives of \textit{E. coli} K-12 and are described in Table S1. The protocol for P1 transduction has been described previously (71). All P1 transductions were selected on 2% agar plates made with either Luria Broth or 56/2 minimal media (71) supplemented with 0.2% glucose, 0.001% thiamine and
specified amino acids. Selection with antibiotics used either 50 μg/ml kanamycin, 25 μg/ml chloramphenicol, or 10 μg/ml tetracycline. All transductants were grown at 37°C and purified on the same type of media on which they were selected.

Preparation and analysis of cells for microscopy. The cells for SOS expression were prepared as follows. The cells were grown in minimal medium to mid-log phase and then 3 microliters of cells were placed on a 1% agarose pad. A coverslip was then applied on top of the agarose pad. Cells were then imaged under identical settings. Images (phase contrast and fluorescent) were taken on 3 different days and 3 different images for each strain each day. The cells were imaged using a 750 msec exposure and a 100X objective. This differed from previous work where a 100 msec exposure and a 60X objective were used. These images were analyzed by a combination of MicrobeTracker software (60) and Matlab R2011a software (Mathworks, Inc.). The Relative Fluorescence Intensity (RFI) for each cell was normalized to the average fluorescence intensity of a JC13509 strain (no gfp). Typically between 1000 and 3000 cells are counted for each strain. Statistical analysis of the data was performed using Student’s T-Test.

The full genotype for the **recA-gfp** translational fusion used here is **recAo1403 recA4155,4136::gfp-901** (52). This is abbreviated to **recA4155,4136** in Table S1. **recAo1403** is an operator mutation that increases the basal or non-SOS-induced level of transcription 2-3 fold (69). **gfp-901** refers to **mut-2** (9) with the additional “monomeric” mutation A206T (74). **recA4155** is a mutant allele of **recA** with an arginine-to-alanine change at codon 28. It does not make storage structures in vivo (52). **recA4136** refers to the specific fusion of **recA** to **gfp** (52).
The recA4155,4136::gfp-901 strains were prepared as in previous publications. Z-stacks of cells were imaged using a 750 msec exposure with an ND4 filter and a 100X objective. This differed from previous work where a 100 msec exposure with no ND4 filter and a 60X objective were used. The Z-stacks of the fluorescent images were processed by deconvolution using Volocity v5.1 software (Improvision, Inc.). Deconvolved images were then flattened and foci determined by a special thresholding program written by Q. Wang (personal communication). The phase contrast images were then converted to binary images using MicrobeTracker (60) software. Programs written in Matlab R2011a (Mathworks, Inc.) were used to analyze the binary and fluorescent images to produce the data in Table 4. Statistical analysis of the data was performed using Chi-Square Test of Homogeneity for an r x c Contingency Table (44).

RESULTS

In this work, SOS expression is measured in individual cells containing a sulAp-gfp transcriptional fusion reporter. This transcriptional fusion has been previously described (41, 46). The sulAp-gfp is inserted in the att\textLambda site on the chromosome. The sulA promoter has been shown to be an early SOS promoter (10). All strains used in this study also have sulB103 (40). sulB103 is an allele of fisZ that makes the cells insensitive to the action of the sulA SOS cell division inhibitor (4). In all cases, the strains were grown in minimal media at 37°C to log phase and then assayed for the amount of fluorescence in individual cells. New methods for counting cells, detecting foci (when using RecA-GFP as a marker for RecA structures) and measuring the levels of GFP fluorescence have been employed in this work. See Materials and Methods for more details.
In this work, the level of SOS expression is reported in two ways: the average Relative Fluorescence Intensity (RFI) and the percentage of the population having 9-fold (or 18-fold) or greater levels of expression than the average cell having no gfp (see Materials and Methods). The average RFI for a strain is the normalized pixel intensity that has been average for each pixel in a cell and then for all cells in the population. The RFI is similar to a bulk measurement of a culture. The 9-fold level was chosen due to results obtained previously from single-cell analysis (40). There it was shown that all individual cells in a recA-deleted strain had less than 6-fold levels of fluorescence above background. It was decided in that work that any cell having fluorescence 6-fold or above would be considered to be induced for SOS expression (40). In this work, a more conservative 9-fold cutoff is used (and the extremely conservative 18-fold cutoff is also reported for comparison).

radA limits SOS expression in a recA4142 mutant. Constitutive SOS expression in the recA4142 (F217Y) mutant is dependent upon ruvAB (35, 36). Since radA is partially redundant with ruvAB for UV survival and recombination (2), it is possible that radA may also be required for SOS expression in a recA4142 mutant and that the deletion of radA should lower SOS expression. To test this, recA4142 and a deletion of radA were combined into a single strain and the resulting double mutant measured for SOS expression. Surprisingly, the radA recA4142 double mutant showed a large increase in SOS expression relative to either single mutant (compare SS9024 (RFI of 120.8) with SS7102 (RFI of 2.9) and SS9023 (RFI of 15.9) in Table 1; the p values are both < 10^-5).
This result suggested that instead of RadA being required for SOS expression in the recA4142 mutant, it may be limiting or repressing SOS constitutive expression.

Overproduction of RadA decreases SOS expression in a recA4142 mutant, but has no effect on SOS induction after UV treatment. Given that radA is limiting for SOS expression in a recA4142 mutant, over-expression of radA could decrease SOS expression in this background. To test this an over-expression mutant of radA was constructed on the chromosome. It places a strong constitutive promoter and optimized ribosome binding site in front of the radA gene (Figure 1) (55, 64, 69). The construct also changes the GTG start codon to an ATG start codon. This over-expression mutation (radAop) was combined with recA4142 and a significant decrease in SOS expression was observed relative to the recA4142 mutant alone (compare SS9023 (RFI of 15.9) with SS8254 (RFI of 4.6) in Table 1; p value was <10^{-5}). RadA overproduction also decreased SOS constitutive expression 4-fold when recA4142 was augmented by a recAo1403 mutation (compare SS6156 (RFI of 102.4) with SS8272 (RFI of 27.6) in Table 1; p value was <10^{-5}).

Certain recA alleles (i.e., recA4162 (I298V)) can suppress SOS constitutive expression caused by recA4142 in cis or in trans (37). However, this suppression is very specific. While recA4142,4162 double mutants show low levels of SOS constitutive expression, they show UV-induced SOS like wild type (37). It was therefore of interest to test if RadA overproduction inhibited all SOS expression or just SOS constitutive expression in log phase cells. To test this, SS8254 was treated with UV irradiation and measured for SOS expression. Table 2 shows that this strain induced SOS expression 6-
fold after UV treatment (compare SS8254 (RFI of 4.6) in Table 1 to SS8254 in Table 2 (RFI of 32.6), p value was $<10^{-5}$) and this strains behaved similarly to the wild type.

From these experiments it is concluded that $radA$ can suppress SOS constitutive expression in a $recA4142$ mutant. This ability is proportional to the amount of RadA in the cell and is specific for SOS constitutive expression in log phase cells and has no detectable effect on SOS expression after UV-treatment.

$radA$, $recX$ and the amount of RecA each contribute to limiting SOS expression in an $xthA$ mutant. The goal of this work was to test the idea that there may be mechanism(s) repressing SOS expression at RecA filaments in wild type log phase cells. The experiment above shows that removal of $radA$ can increase SOS constitutive expression in a $recA4142$ mutant. It is also known that in a $recA4142$ mutant, $recX$ (deletion) and $recAo1403$ mutations increase SOS constitutive expression 3-fold and 10-fold respectively (36). Thus, using $recA4142$ as a guide, it is possible that $radA$, $recX$ and the concentration of monomeric RecA in the cell could be repressing SOS expression in wild type log phase cells at the level of filament stability. A priori, these could function either in the same pathway or in different pathways. It is also known that $xthA$ (Exonuclease III) mutants have about 3-fold higher SOS expression in a $recA4142$ mutant. This, however, is thought to occur because they have 3-fold more RecA loading events (7, 36), not because XthA somehow affects the RecA filament. To test if $recX$, $radA$ and/or the level of $recA$ transcription was limiting SOS expression in an $xthA$ mutant (where wild type RecA was forming the filament and not RecA4142), $recX$, $radA$ and $recAo1403$ mutations were combined with an $xthA$ mutation.
The RFI values in Table 3 show that the deletion of \textit{radA} or the addition of \textit{recAo1403} to the \textit{xthA} mutant showed small, but not significant, increases relative to \textit{xthA} alone (compare SS4857 (RFI of 3.6) with SS9040 (RFI of 3.9) and SS7118 (RFI of 4.7) in Table 3; \textit{p} values of 0.9 and 0.06 respectively). Deletion of \textit{recX} in an \textit{xthA} mutant, however, lead to a slightly larger, and significant increase in SOS expression (compare SS4857 (RFI of 3.6) with SS9041 (RFI of 4.8) in Table 3, \textit{p} values are < 0.001). It is concluded that as a single mutation, only \textit{recX} (and not \textit{radA} or \textit{recAo1403}) shows a small increase in SOS expression in the \textit{xthA} strain.

Since the single mutants had very small, if any, effects on SOS expression, it was tested whether combinations of these three mutants (doubles or triples) could increase expression in an \textit{xthA} mutant. Table 3 shows that the deletion of both \textit{radA} and \textit{recX} lead to a significant increase (2-fold) relative to either single mutant (compare SS7132 (RFI of 10.7) with SS7118 (RFI of 4.7) and SS9041 (RFI of 4.8) in Table 3, \textit{p} values are both < 10^{-5}). The combination of \textit{recAo1403} and deletion of \textit{radA} also increased expression significantly from both single mutants (compare SS7128 (RFI of 6.7) with SS7118 (RFI of 4.7) and SS9040 (RFI of 3.9) in Table 3, \textit{p} values are < 10^{-3} and < 10^{-5} respectively).

The last double mutant combination of \textit{recAo1403} and deletion of \textit{recX} yielded the smallest significant increase relative to either single mutant (compare SS9045 (RFI of 5.1) with SS9041 (RFI of 4.8) and SS9040 (RFI of 3.9) in Table 3, \textit{p} values are 0.03 and < 10^{-5} respectively).

Finally, the combination of all three mutations was tested by the construction of the \textit{recAo1403 radA recX} triple mutant in the \textit{xthA} background. This yielded a large and significant increase (2- to 5-fold) relative to any of the three double mutants (compare
SS7129 (RFI of 19.8) with SS7132 (RFI of 10.7), SS7128 (RFI of 6.7) and SS9045 (RFI of 5.1) in Table 3 with \(p \) values of < \(10^{-5} \) for all three).

It is concluded that \(\text{radA} \), \(\text{recX} \) and the level of \(\text{recA} \) transcription form three independent pathways for the repression of SOS expression in log phase cells. However, the quantitative contributions of these pathways may be not equal or completely additive.

\[\text{radA and the level of recA transcription (but not recX) each contribute to limiting SOS expression in wild type cells.} \]

In the above experiments, it is seen that \(\text{radA} \), \(\text{recX} \) and the level of \(\text{recA} \) transcription serve to repress SOS expression in an \(\text{xthA} \) mutant. It is possible that these three mechanisms also repress SOS expression in a wild type cell. To test this idea, the same strategy as above was used. All single, double and triple mutant combinations were made in a wild type strain (SS996). Addition of any single mutation to the wild type strain had a small, but not significant increase in SOS expression (compare SS996 (RFI of 1.9) with SS6088 (RFI of 2.2), SS7102 (RFI of 2.9) or SS6080 (RFI of 2.9) in Table 4; \(p \) values are 0.2, 0.6 and 0.8 respectively). It is possible that to see a significant increase one has to make at least double mutant combinations. When making these combinations, it is seen that only \(\text{recA} \text{ao1403 radA} \) led to a significant 2- to 3-fold increase relative to either single mutant (compare SS7136 (RFI of 6.6) with SS6088 (RFI of 2.2) or SS7102 (RFI of 2.9) in Table 4; \(p \) values < \(10^{-5} \) for both). The \(\text{radA recX} \) double led to an unexpected small, significant decrease relative to the \(\text{radA} \) single mutant (compare SS7152 (RFI of 2.4) with SS7102 (RFI of 2.9) in Table 3; \(p \) value = \(10^{-3} \)). A small and not significant decrease was seen relative to the \(\text{recX} \) single mutant (compare SS7152 (RFI of 2.4) with SS6080 (RFI of 2.9) in Table 4; \(p \) value = \(10^{-4} \)).
The last double mutant recAo1403 recX revealed a significant 2-fold decrease relative to either the recAo1403 or recX single mutants (compare SS7155 (RFI of 1.2) with SS6088 (RFI of 2.2) or SS6080 (RFI of 2.9) in Table 4; p values <10^{-5} for both).

Lastly, the recAo1403 recX radA triple mutant revealed a significant increase relative to two of the double mutants (compare SS5841 (RFI of 5.8) with SS7152 (RFI of 1.2) or SS7155 (RFI of 1.2) in Table 3, both p values are < 10^{-5}). Comparison of the triple mutant with the highest of the double mutants, recAo1403 radA, revealed a small but significant decrease (compare SS5841 (RFI of 5.8) with SS7136 (RFI of 6.6) in Table 4; p value is <10^{-3}).

These results suggest that RadA and the level of recA transcription provide two independent and additive pathways for repressing SOS expression in wild type cells. RecX does not play a significant role in repression of SOS expression in wild type cells as it does in the xthA mutant. However, RecX may play a role in helping to provide SOS expression in some situations in wild type cells.

radA alone and radA recX mutations do not affect the number of RecA-GFP foci.

Since the goal of this work is to test the hypothesis that there are factors that repress the ability of RecA filaments to induce the SOS response in log phase cells, it is necessary to test if these same mutations affect the number of RecA loading events (as measured with RecA-GFP foci). Therefore, this next section will test if removing both radA and recX affect the number of RecA-GFP foci in an xthA mutant and wild type strains. Previous work has shown that when wild type cells are grown in minimal media that the removal of recX slightly increases (20%) the number of RecA-GFP foci per area of cell. This
increase, however, was not significant (53). Note that all recA-gfp strains are additionally recAo1403.

Table 5 shows that in a log phase population about 25% of the cells have at least one RecA-GFP focus. This number is about 2-fold higher than previous reports (52) and is likely due to improved methods of image acquisition and analysis (see Materials and Methods). Table 5 shows that upon the removal of recX, there is an approximately 30% increase in RecA-GFP foci per area of cell. This is barely significantly different from wild type ($p = 0.03$). Removal of radA alone, however, revealed a smaller, approximately 20% increase, in the number of foci per area of cell. This was not significantly different from wild type ($p = 0.2$). The distribution of RecA-GFP foci in the radA recX double mutant was also not significantly different from either of the single mutants or wild type (Table 5). Therefore, it is concluded that removal of radA alone or radA recX have no significant effect on the number of RecA-GFP foci per area of cell.

Table 5 further shows that removal of both radA and recX in an xthA mutant increases the number of foci per area of cell about 20% (compare SS4560 with SS9048, p value < 0.001). It is concluded that in an xthA mutant, the combination of removing both radA and recX can increase the number of RecA-GFP foci in a small, but significant way.

The percentage of cells in a population of recX radA (with or without xthA) mutants with RecA-GFP foci correlates with the percentage of cells with elevated levels of SOS expression. The goal of this work was to test the hypothesis that there are specific mechanisms that are repressing SOS expression when RecA forms a filament to repair housekeeping types of DNA damage. If those mechanisms are removed then the
percentage of cells with a RecA structure (as measured with RecA-GFP foci) should be approximately equal to the number of cells with high levels of SOS expression. Three tentative mechanisms have been identified above that involve \textit{radA}, \textit{recX} and the level of \textit{recA} transcription.

Inspection of the data in Tables 3, 4 and 5 allows one to test this hypothesis. Comparison of the wild type cases reveals that 25\% have RecA-GFP foci (SS3085 in Table 5) and about 1.6\% of cells have high levels of SOS expression (SS996 in Table 3). Similarly, removing \textit{xthA} increases the percentage of RecA-GFP foci to 83.3\% and increases the percentage of cells with high levels of SOS expression to 9.5\%. In each case (\textit{xthA}+ and \textit{xthA} mutant) removal of \textit{radA}, \textit{recX} and the addition of \textit{recAo1403} allows the number of foci to remain unchanged, while increasing the percentage of cells with high levels of SOS expression to 24.2\% (SS5841 in Table 4) and 91.2\% (SS7129 in Table 3). This supports the idea that the increase in SOS expression when adding \textit{recAo1403} and deleting \textit{recX} and \textit{radA} is due to a release of repression at the existing RecA filaments.

\textbf{Overproduction of RadA has no effect on UV survival, recombination or SOS induction in a wild type cell.} The data above show that normal levels of RadA and overproduction of RadA could inhibit SOS expression in \textit{recA4142}, but had no effect on SOS expression after UV treatment. The ability of \textit{radAop} to inhibit SOS expression may be specific to \textit{recA4142} or may extend to \textit{recA}+. Since it is also known that overexpression of \textit{recX} inhibits several of RecA's abilities both \textit{in vivo} and \textit{in vitro} (62), it was of interest to test if RadA overproduction would have any negative effect on RecA function in a \textit{recA}+ strain. Table 1 shows that overproduction of RadA did not
significantly change SOS expression in log phase cells relative to wild type (compare SS996 (RFI of 1.9) with SS8253 (RFI of 2.8) in Table 1; p value was 0.3). Table 2 shows that overproduction of RadA does not significantly change the ability to survive UV irradiation, undergo recombination (as measured by P1 transduction) or induce SOS expression after UV irradiation relative to a wild type strain (SS996). We conclude that overexpression of radA has no detectable effect on these recA phenotypes.

DISCUSSION
The mechanism of induction of the SOS Response is thought to proceed by RecA binding to ssDNA produced as a consequence of DNA damage, which in turn leads to the assembly of a RecA-DNA filament. The LexA protein can then interact with the RecA-DNA filament and increase its rate of auto-proteolysis. This lowers the amount of LexA in the cell binding to various promoters such that RNA polymerase can transcribe a set of genes that can help to repair DNA, mutagenize DNA, inhibit cell division and perform other functions yet to be discovered (there are still many SOS genes of unknown function). SOS mutagenesis has often been thought of as a “last resort” tactic useful to a population of cells trying to survive some external insult. It is likely detrimental to the individual as increases in mutation frequency are more likely to inactivate important genes, rather than mutate genes in favorable ways. Thus it seems prudent that cells would have a mechanism to prohibit SOS induction when RecA is used to repair housekeeping types of DNA damage and only induce SOS under the most dire of circumstances. This work shows that the absence of radA and the presence of slightly higher levels of recA transcription independently can lead to higher SOS expression in an
otherwise wild type strain. In an xthA mutant, where there are about 3-fold more RecA loading events, maximal levels of SOS expression are achieved if recX is additionally deleted. The effects of radA, recX and recAo1403 on SOS expression appear independent. Thus, it is hypothesized that SOS expression in log phase cells where RecA has formed filaments on the DNA is repressed by three mechanisms that work in parallel to minimize the half-life of RecA filaments. A shorter half-life would lead to higher LexA levels in the cell whereas a longer half-life would allow more time for RecA to interact with LexA and decrease its level in the cell. It is also possible that some character of the RecA filament changes in some way to allow SOS expression. Possibilities for these character traits may include length of the filament and or the continuous (or discontinuous) nature of the filament (50, 66). Other characteristics are also possible (42). A more detailed hypothesis for the contributions of each of the three mechanisms follows.

Given that previous studies on RadA revealed a synergistic activity with RuvAB and RecG in processing of post-synaptic recombination structures, it is possible that the role of RadA in repression of SOS in log phase cells is the rapid processing of RecA-bound recombinational intermediates. If the repair of DNA occurs quickly, then the half-life of RecA-filaments that can interact with LexA will be short and little if any LexA will be cleaved. Other models for how RadA might repress SOS expression at RecA filaments in log phase cells are also possible. One suggests that RadA could interact directly with RecA filaments in the groove and compete with LexA binding, preventing the increase in the rate of auto-proteolysis (51). Another model suggests that RadA could
repress SOS by degrading the RecA protein in the filament with its Lon Protease-like domain (2).

The second mechanism is based on the observations that recAo1403 and the deletion of radA increase SOS expression. As mentioned above, RecA filament growth is dynamic occurring at both ends with a net increase and decrease to the 3’ and 5’ ends respectively. The decrease or RecA dissociation from the filament occurs when ATP is hydrolyzed (58). Therefore, if the ATP hydrolysis rate is constant, increasing the rate of addition at the 3’ end by increasing the RecA concentration should increase the length and half-life of the RecA filament. Supporting this model is the observation that the recA730,2201 mutant that cannot hydrolyze ATP, but still can bind ATP and ssDNA, shows about 25% of the cells in a population with elevated levels of SOS expression (24).

Thirdly, RecX has been shown to inhibit filament extension at the 3’ end presumably by binding and physically blocking RecA from adding to that end ((5, 23, 31) and reviewed in (12)). The overall effect of RecX is then to destabilize the filaments since the RecA-ATP hydrolysis rate remains unchanged. Therefore, removal of RecX could also increase the length and half-life of RecA filaments in cells where the RecA ATP-hydrolysis rate remains constant. It has also been shown that RecX can bind in the middle of the RecA filament and presumably cause discontinuities (50, 66).

A complicating issue with the use of the recAo1403 mutation is that it not only increases RecA expression, but it also increases recX expression since the two are transcribed from the same promoter. It is known that the amount of transcription and thus expression of RecX is much lower than RecA because there is significant Rho-Independent termination between the two genes (45). Thus, the balance between RecA
and RecX in the cell is of great importance when considering the half-life of RecA-DNA
filaments.

Are the contributions of the three factors, radA, recX, and maintaining the amount
of RecA below a critical value, completely independent and additive in their abilities to
repress SOS expression at RecA filaments? If this were absolutely true, then one would
expect to see 1/3 of the full increase in SOS expression seen in the triple mutant in each
of the single mutants and 2/3 of the full amount in the double mutants. This is not seen at
all in the single mutants and in 2 out of 3 double mutants in the xthA background. Most of
the single and double mutants show fairly low, equal levels of expression. This suggests
that the mechanisms are independent and that one mechanism is mostly adequate for
repression, but the absence of two mechanisms (depending on which ones) is not. There
are, however, two notable exceptions: the large increase in the radA recX double mutant
(xthA background, Table 3, SS7132) and the decrease in expression of the recAo1403
recX xthA mutant (Table 4, SS7155). The reasons for these departures are not yet clear.

In the xthA+ strains, there is the question of why recX appears to have no
contribution. One idea to explain why removal of recX is needed in the xthA mutant cells
for maximal SOS expression (but not in the xthA+ cells) is suggested by the fact that xthA
mutants have more RecA loading events. Assuming that the RecA concentration in xthA+
and xthA mutant cells is equal, then the RecA filaments in xthA mutants are likely to have
a shorter half-life or length (because the concentration of RecA remains constant), and so
the removal of recX is needed to allow for sufficient increase in the half-life of the RecA
filament. It is also possible that the three factors may not be completely equal and
independent in all types of mutants. Here it is proposed that the abilities of RadA may be more important than those of RecX or maintenance of the concentration of RecA.

If these mechanisms serve to repress SOS expression in log phase cells, then how does the cell overcome these when SOS is required? For this discussion, two examples will be considered. The first is SOS induction after UV irradiation. It requires DNA replication and RecFOR function (26, 56, 70). The second is a double-stand break caused by I-SceI cleavage at an I-SceI site, mediated by RecBCD (41, 46). In each case, either multiple or repeated RecA-DNA filaments may be formed that are more extensive, longer lived recombinational repair structures that eventually and assuredly lead to SOS expression. Under conditions of UV irradiation, both forks are likely to encounter lesions in the DNA multiple times before the DNA damage is cleared. The gaps that are produced will lead to daughter-strand gap repair producing many recombination structures. Depending on the efficiency of nucleotide excision repair, the forks may repetitively encounter DNA damage, reloading RecA each time, lengthening the time that the RecA filament can interact with LexA and drive down the LexA concentration in the cell. In the I-SceI case, there is only one site per chromosome. Once cut, there are two double strand ends that RecBCD can then use to load RecA. The only homologous sequences, however, that might be available for repair will be found in the sequestered sister nucleoid (and only if it has not yet been cut by I-SceI). Thus it is likely that the RecA filaments will spend a long time searching (possibly nonproductively) for homologous sequences and will be available for LexA cleavage.

The data gathered in this work reflects the SOS expression and the number of RecA structures in individual cells. It must also be considered that the data are static.
pictures of dynamic situations. One cannot tell in any one cell if the SOS levels are increasing or decreasing or if RecA structures are being built or taken apart. Presumably across the population both are occurring. One would not expect to see maximal levels of SOS expression (about 200-fold above background for a LexA-defective mutant) because one would expect that the lifetime of the RecA-DNA filament would be short, since RecA would be quickly repairing the DNA damage so that the cell could resume normal DNA replication and growth as soon as possible. Attaining the maximal level of SOS expression is only likely if RecA filaments were found in all cells, all the time, and the rate of LexA auto-proteolysis was greater than its rate of production.

In the multiply mutant strains, there is now reasonable agreement between the percentage of cells with RecA-GFP foci and the percentage of cells with elevated levels of SOS expression if the 9-fold cutoff is used (24% and 91% for the wild type and xthA mutant for SOS, respectively and 33% and 83% with and without xthA for RecA-GFP foci, respectively). If, however, the extremely conservative 18-fold cutoff is used, the percentage of cells with elevated levels of SOS expression decreases 2-3 fold to 8% and 42% of the population of the wild type and xthA mutant, respectively. These numbers are less correlative, but show the same trends.

It is possible that the reason why recAo1403 recX radA mutants in either the wild type or xthA mutant have higher levels of SOS is due to the presence of more DNA damage. This seems unlikely for two reasons. First, the single mutants show no significant increase in SOS in either case. This is also true for the recX radA double mutant in the wild type background. Second, if the presence of RecA-GFP foci is
indicative of RecA loading at DNA damage, then one also does not see a significant
increase in the number of RecA-GFP foci in the radA and radA recX strains (Table 5).

The work began with the finding that SOS expression in the recA4142 mutant
increased when radA was deleted and decreased when radA was over-expressed. It has
also been shown that the recA4142 mutant shows an increase in SOS expression with
recaol403 or the deletion of recX or xthA individually (36). This is not seen with RecA+.

One way to explain this is to hypothesize that some property of the RecA4142 protein,
possibly its high degree of cooperativity in forming a filament (17), is able to poise the
RecA4142 filament for a longer half-life (or length) such that only one of the other
mutations is needed to show a measurable increase in SOS expression. Since the RecA+
filament has a lower degree of cooperativity, the release of other repression mechanisms
is necessary for a measurable increase in SOS expression.

ACKNOWLEDGEMENTS

This work was supported by AI059027 from the National Institutes of Health. We
would like to thank Kevin Griffith for reading the manuscript before publication and
offering suggestions. We would especially like to thank Quanli Wang for assistance with
the thresholding program and Oleskii Sliusarenko for assistance with the MicrobeTracker
program.
Table 1

The effects of a radA mutations on SOS expression in a recA4142 mutant

<table>
<thead>
<tr>
<th>Strain</th>
<th>recA</th>
<th>radA</th>
<th>RFI</th>
<th>% > 9x (18x)</th>
<th>Cells counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS996</td>
<td>+</td>
<td>+</td>
<td>1.9</td>
<td>1.6 (0.7)</td>
<td>2140</td>
</tr>
<tr>
<td>SS7102</td>
<td>+</td>
<td>del</td>
<td>2.9</td>
<td>4.5 (1.0)</td>
<td>1254</td>
</tr>
<tr>
<td>SS9023</td>
<td>4142</td>
<td>+</td>
<td>15.9</td>
<td>24.7 (9.0)</td>
<td>1737</td>
</tr>
<tr>
<td>SS9024</td>
<td>4142</td>
<td>del</td>
<td>120.8</td>
<td>82.9 (74.2)</td>
<td>1571</td>
</tr>
<tr>
<td>SS8253</td>
<td>+</td>
<td>op</td>
<td>2.8</td>
<td>3.4 (0.2)</td>
<td>1761</td>
</tr>
<tr>
<td>SS8254</td>
<td>4142</td>
<td>op</td>
<td>4.6</td>
<td>12.4 (1.3)</td>
<td>2041</td>
</tr>
<tr>
<td>SS6156</td>
<td>o1403</td>
<td>4142</td>
<td>+</td>
<td>102.4</td>
<td>787</td>
</tr>
<tr>
<td>SS8272</td>
<td>o1403</td>
<td>4142</td>
<td>op</td>
<td>27.6</td>
<td>918</td>
</tr>
</tbody>
</table>

RFI stands for the average Relative Fluorescence Intensity (similar to bulk measurement) and “% > 9x (18x)” stands for the percentage of cells with SOS expression 9-fold or 18-fold above background. The statistical measure of significance for the data in this table was determined by the Student’s T-test. p values are given in the text and values of 0.05 or lower are considered significant. “op” stands for overproducer.
Table 2
Summary of phenotypes in the radA over-expression strain relative to a wild type strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>recA</th>
<th>radA</th>
<th>UV Survival</th>
<th>RFI</th>
<th>% > 9x (18x)</th>
<th>Rel. Rec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS996</td>
<td>+</td>
<td>+</td>
<td>0.91 ± 0.3</td>
<td>32.8</td>
<td>98.2 (36.4)</td>
<td>1.00 ± 0.2</td>
</tr>
<tr>
<td>SS8253</td>
<td>+</td>
<td>op</td>
<td>0.92 ± 0.4</td>
<td>31.2</td>
<td>97.2 (32.3)</td>
<td>1.12 ± 0.3</td>
</tr>
<tr>
<td>SS9023</td>
<td>4142</td>
<td>+</td>
<td>ND</td>
<td>34.8</td>
<td>99.3 (41.3)</td>
<td>ND</td>
</tr>
<tr>
<td>SS8254</td>
<td>4142</td>
<td>op</td>
<td>ND</td>
<td>32.6</td>
<td>98.9 (31.3)</td>
<td>ND</td>
</tr>
</tbody>
</table>

These data are the averages of three experiments or the counting of 800-1000 cells. For all three experiments, the cells were grown in minimal media at 37°C into log phase before the treatment. The UV survival reported is after 20 Joules/m² of irradiation. For the SOS test, cells were irradiated for 10 Joules/m² and imaged after 1.5 hours of incubation at 37°C in the dark and quantified as described in the Materials and Methods. Recombination was measured by inheritance of a marker after P1 transduction. An equal titer of P1 lysate (M.O.I. of 0.1) was used for each strain. “op” stands for overproducer. ND is not determined.
Table 3

The effects of *radA*, *recX* and *recAo1403* mutations on SOS expression in log phase *xthA* cells

<table>
<thead>
<tr>
<th>Strain</th>
<th>recAo</th>
<th>radA</th>
<th>recX</th>
<th>xthA</th>
<th>RFI</th>
<th>% > 9x (18x)</th>
<th>Cells counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS996</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1.9</td>
<td>1.6 (0.7)</td>
<td>2140</td>
</tr>
<tr>
<td>SS4857</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>del</td>
<td>3.6</td>
<td>9.5 (2.0)</td>
<td>1582</td>
</tr>
<tr>
<td>SS9040</td>
<td>+</td>
<td>+</td>
<td>del</td>
<td>+</td>
<td>3.9</td>
<td>10.2 (2.4)</td>
<td>945</td>
</tr>
<tr>
<td>SS7118</td>
<td>+</td>
<td>del</td>
<td>+</td>
<td>del</td>
<td>4.7</td>
<td>19.0 (3.4)</td>
<td>1343</td>
</tr>
<tr>
<td>SS9041</td>
<td>+</td>
<td>+</td>
<td>cat</td>
<td>del</td>
<td>4.8</td>
<td>16.7 (3.3)</td>
<td>1291</td>
</tr>
<tr>
<td>SS7132</td>
<td>+</td>
<td>del</td>
<td>cat</td>
<td>del</td>
<td>10.7</td>
<td>71.0 (31.4)</td>
<td>2409</td>
</tr>
<tr>
<td>SS7128</td>
<td>1403</td>
<td>del</td>
<td>+</td>
<td>del</td>
<td>6.7</td>
<td>32.4 (6.9)</td>
<td>1286</td>
</tr>
<tr>
<td>SS9045</td>
<td>1403</td>
<td>+</td>
<td>cat</td>
<td>del</td>
<td>5.1</td>
<td>23.5 (5.5)</td>
<td>779</td>
</tr>
<tr>
<td>SS7129</td>
<td>1403</td>
<td>del</td>
<td>cat</td>
<td>del</td>
<td>19.8</td>
<td>91.3 (42.6)</td>
<td>1136</td>
</tr>
</tbody>
</table>

See footnote to Table 1.
Table 4
The effects of radA, recX and recAo1403 mutations on SOS expression in log phase cells

<table>
<thead>
<tr>
<th>Strain</th>
<th>recAo</th>
<th>radA</th>
<th>recX</th>
<th>RFI</th>
<th>% > 9x (18x)</th>
<th>Cells counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS996</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1.9</td>
<td>1.6 (0.7)</td>
<td>2140</td>
</tr>
<tr>
<td>SS6088</td>
<td>1403</td>
<td>+</td>
<td>+</td>
<td>2.2</td>
<td>2.4 (0.6)</td>
<td>1534</td>
</tr>
<tr>
<td>SS7102</td>
<td>+</td>
<td>del</td>
<td>+</td>
<td>2.9</td>
<td>4.5 (1.0)</td>
<td>1254</td>
</tr>
<tr>
<td>SS6080</td>
<td>+</td>
<td>+</td>
<td>cat</td>
<td>2.9</td>
<td>4.4 (0.7)</td>
<td>995</td>
</tr>
<tr>
<td>SS7152</td>
<td>+</td>
<td>del</td>
<td>cat</td>
<td>2.4</td>
<td>3.7 (0.3)</td>
<td>1532</td>
</tr>
<tr>
<td>SS7136</td>
<td>1403</td>
<td>del</td>
<td>+</td>
<td>6.6</td>
<td>23.3 (5.3)</td>
<td>1399</td>
</tr>
<tr>
<td>SS7155</td>
<td>1403</td>
<td>del</td>
<td>cat</td>
<td>1.2</td>
<td>0.3 (0.0)</td>
<td>1590</td>
</tr>
<tr>
<td>SS5841</td>
<td>1403</td>
<td>del</td>
<td>cat</td>
<td>5.8</td>
<td>24.2 (7.9)</td>
<td>1704</td>
</tr>
</tbody>
</table>

See footnote to Table 1.
Table 5
The effects of radA, recX and xthA mutations on RecA-GFP foci formation

<table>
<thead>
<tr>
<th>Strain</th>
<th>radA</th>
<th>recX</th>
<th>xthA</th>
<th>Foci per Area</th>
<th>0 Foci</th>
<th>1 Foci</th>
<th>2 Foci</th>
<th>3 or more Foci</th>
<th>Cells Counted</th>
<th>Foci Counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS3085</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.44</td>
<td>75.9</td>
<td>16.5</td>
<td>5.9</td>
<td>1.7</td>
<td>990</td>
<td>257</td>
</tr>
<tr>
<td>SS4560</td>
<td>+</td>
<td>+</td>
<td>del</td>
<td>1.52</td>
<td>33.6</td>
<td>40.8</td>
<td>26.4</td>
<td>5.4</td>
<td>979</td>
<td>959</td>
</tr>
<tr>
<td>SS2647</td>
<td>+</td>
<td>del</td>
<td>+</td>
<td>0.63</td>
<td>64.2</td>
<td>26.4</td>
<td>7.0</td>
<td>2.4</td>
<td>1266</td>
<td>623</td>
</tr>
<tr>
<td>SS7261</td>
<td>del</td>
<td>+</td>
<td>+</td>
<td>0.57</td>
<td>66.4</td>
<td>23.5</td>
<td>7.1</td>
<td>3.0</td>
<td>1221</td>
<td>578</td>
</tr>
<tr>
<td>SS9043</td>
<td>del</td>
<td>del</td>
<td>+</td>
<td>0.51</td>
<td>74.6</td>
<td>18.6</td>
<td>6.0</td>
<td>2.7</td>
<td>1061</td>
<td>336</td>
</tr>
<tr>
<td>SS9048</td>
<td>del</td>
<td>del</td>
<td>del</td>
<td>1.93</td>
<td>16.7</td>
<td>43.8</td>
<td>29.6</td>
<td>9.9</td>
<td>635</td>
<td>857</td>
</tr>
</tbody>
</table>

The statistical measure of significance for the data in this Table was determined by a Chi-Square Test of Homogeneity for an r x c Contingency Table (44). The single mutants were compared to the wild type and the double and triple mutants were compared to corresponding single or double mutant. p values of 0.05 or lower are considered significant. p values are given in the text.
REFERENCES

Figure 1: This figure shows the sequence of DNA that has been added in front of the *radA* gene to increase its level of transcription and translation. Spaces in the sequence are placed there to separate functional sequences of DNA that are described below or above the sequence. The only omitted sequence is that of the *cat* gene and is denoted by the multiple dots. The promoter was modeled on the sequence of the RecA promoter and 5’ untranslated region. Deviations from the *recA* sequence to remove SOS regulation and to improve the ribosome binding site are denoted in lower case letters. The allele numbers of the operator mutations that remove the LexA regulation are given below the line. The sequences for -10 and -35 boxes are underlined and the transcriptional start site is denoted by an asterisk. The construction was verified by DNA sequencing.

Figure 2: This figure summarizes a model to explain how the three independent mechanisms serve to limit SOS expression in log phase cells that have RecA-DNA filaments in the absence of external DNA damage. The model proposes that RecA is loaded by either RecBCD or RecFOR depending on the DNA substrate (double strand end or single strand gap, respectively). Once loaded, the RecA filament can grow in the 5’ to 3’ direction and lose monomers from the 5’ end through ATP hydrolysis. The half-life of the RecA-DNA filament can be prolonged by increasing the concentration of RecA in the cell, thus increasing the rate of RecA adding to the 3’ end. RecX can decrease the half-life of the RecA filament by inhibiting 3’ addition. The filament will shorten since ATP hydrolysis will still remove RecA from the 5’ end. Lastly, RadA can...
decrease the half-life of the filament by processing it towards repaired DNA. It should be noted that other proteins that can also affect the half-life of RecA filaments such as DinI and UvrD are not depicted here. The red circles are RecA and the solid lines are indicative of DNA.
Figure 1

```
tacgaggtacacc gcgtac GAAGTTCATCTCTAGAAGATATAGGAACCTC gggcgacattgacgtattg......
upstream of radA G76 BsiWI FRT site beginning of cat sequences in pACYC184

.....ccccacaagcttggtgctacgctctga GAAGTTCATCTCTCTAGAAGATATAGGAACCTC cctgagttatgctagctgtgctag
end of cat FRT site arbitrary sequence used for PCR
sequences in pACYC184

RecA promoter and Translational Initiation Sequence

LexA binding site

+++ +++
CACTGTGATCGCTAGGACATGGACATGGTATGCTCAGAGAACATGTACCTAAGACGGTGATTTACCGGCAATG AAGGAGGAaAgAAA ATG
-35 o1401 o281 -10 *

RBS start codon

gca aaa gct cca aaa cgc gcc ttt gtg tgt
radA coding sequence
```
Figure 2