Coordinating FocA and Pyruvate Formate-Lyase Synthesis in *Escherichia coli*: Preferential Translocation of Formate Over Other Mixed-Acid Fermentation Products

Lydia Beyer, Claudia Doberenz, Dörte Falke, Doreen Hunger, Bernhard Suppmann and R. Gary Sawers

Institute for Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale) Germany

Running title: FocA translocates formate *in vivo*

For correspondence: R.G. Sawers, Institute for Biology/ Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale) Germany

Tel., +49 345 5526350; Fax., +49 345 5527010; Email, gary.sawers@mikrobiologie.uni-halle.de

⊥ Present address: Roche Diagnostics GmbH, 82377 Penzberg, Germany

Keywords: Formate-Nitrite Transporter; formate; fermentation; formate dehydrogenase; pyruvate metabolism
Abstract.

Enterobacteria like *Escherichia coli* generate formate, lactate, acetate and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential and therefore they must be either metabolized rapidly or exported from the cell. *E. coli* has three membrane-localized formate dehydrogenases (FDH) that oxidize formate. Two of these have their respective active site facing the periplasm, the other in the cytoplasm. The bi-directional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study we analysed the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the *focA* translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an approximate 3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate and succinate were exported but only formate was re-imported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate *in vivo* and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH.
Introduction.

Formate is a signature fermentation product of many obligate and facultative anaerobes, particularly of the enterobacteria (1, 2). Due to its low redox potential ($E^o = -420$ mV) formate is also an important electron donor and energy source for many microorganisms. With a $\text{p}K_a$ of 3.75 formate is mainly present as the monovalent anionic species at neutral pH, which means that it must be transported actively across the cytoplasmic membrane. Genetic studies performed with $E. coli$ originally demonstrated that the product of the $focA$ (formate channel) gene has a key function in formate translocation during fermentative growth because mutants unable to synthesize FocA have defects in formate import as well as export (3, 4). Recent structural and biophysical studies have confirmed that FocA is a homopentameric channel, which shows structural similarity to the aquaporin family of membrane proteins (5, 6, 7). How bidirectional substrate translocation is controlled $\textit{in vivo}$, however, is still unclear.

Although FocA is the archetype for this class of membrane proteins, meanwhile phylogenetic studies have revealed that the FNT (formate-nitrite transporter) family is widely distributed amongst the archaea and bacteria and includes several thousand members (8), suggesting that this family is likely evolutionarily ancient. As well as a conserved pentameric structure, the FNT protein family has in common that members translocate small monovalent anionic species such as formate, nitrite or hydrosulfide across bacterial cytoplasmic membranes (5, 6, 7, 8, 9). Intracellular accumulation of these substances can result in uncoupling of the membrane potential and thus these potentially toxic compounds must be either rapidly metabolized or exported from the cell. However, because formate and nitrite are also important electron and nitrogen donors, respectively, their controlled uptake is important for many microbes. FNT channels offer microbial cells the possibility of controlled uptake of these compounds when they are required and available, possibly coupled to proton import (4, 5, 10).
Identifying the features of the FNT proteins that govern their in vivo substrate specificity and ‘gating’ (4, 10) is also an important goal of current research. A recent electrophysiological study performed on purified FocA isolated from Salmonella enterica Typhimurium (10) has demonstrated that it is capable of translocating not only formate but acetate and lactate in vitro, leading to the suggestion that it might be an exporter of a number of the mixed-acid fermentation products in enterobacteria.

In E. coli the focA gene is co-transcribed with the gene encoding pyruvate formate-lyase (PflB), the glycyl radical enzyme responsible for formate production (4, 11, 12). Expression of the focAPflB operon is induced by anaerobiosis and this is controlled by the FNR and ArcA transcription factors (13, 14). Operon expression is induced under conditions resulting in pyruvate accumulation and although IHF is required to mediate pyruvate-dependent induction (15), the mechanism underlying this control is still unclear. Transcription of the operon is also complex, involving multiple promoters as well as transcript processing events (16, 17). The consequence of this elaborate regulation is that the cell is able to maintain tight coordination of FocA and PflB levels. This means that when formate levels increase due to the activity of PflB during mixed-acid fermentation sufficient FocA is available to export it across the cytoplasmic membrane, preventing potential toxicity and uncoupling effects (1, 18).

In this study we addressed the effects of altering expression of the focAPflB operon on formate levels in the growth medium. We also examined the consequences for the cell of decoupling focA and pflB expression and to what extent these changes influence the mixed-acid fermentation product spectrum. Our findings suggest that the tight coordination between FocA and PflB synthesis is important for efficient and specific delivery of formate to the FDHs, which are localized on either side of the cytoplasmic membrane.

Materials and Methods.
Strains, phage and growth conditions. All bacterial strains and phage used in this study are listed in Table 1. Strains were grown in Luria Broth (LB) or the buffered, rich medium TYEP (TYEP: 1% w/v tryptone, 0.5% w/v yeast extract and 100 mM potassium phosphate, pH 6.5) as described (23). Supplements, when required, were added to the following final concentrations: 40 mM glucose; 75 mM or 200 mM sodium hypophosphite. M9 minimal medium (24) was used for hypophosphite-sensitivity assay, while Werkmann minimal medium (WM-medium; 25), which had the following composition: 50 mM disodium phosphate, 100 mM potassium dihydrogen phosphate, 15 mM ammonium sulfate, 1 mM magnesium sulfate, 0.1 mM calcium chloride and 80 mM glucose, pH 6.5, was used for analysis of fermentation products. Aerobic cultures were incubated on a rotary shaker (250 rpm) and at 37°C. Anaerobic growths were performed at 37°C in sealed bottles filled with anaerobic growth medium. When required, the growth medium was solidified with 1.5% (w/v) agar. All growth media were supplemented with 0.1% (v/v) SLA trace element solution (26). The antibiotics chloramphenicol, kanamycin, tetracycline and ampicillin, when required, were added to the medium at the final concentrations of 12.5 µg ml⁻¹, 50 µg ml⁻¹, 15 µg ml⁻¹ and 100 µg ml⁻¹, respectively.

Strain construction. The selC400 allele was transduced from strain FM460 (20) into different E. coli genetic backgrounds by P1kc-mediated transduction according to (24).

Polyacrylamide gel electrophoresis and immunoblotting. Aliquots of 25-50 µg of protein from the indicated sub-cellular fractions were separated by SDS-polyacrylamide gel electrophoresis (PAGE) using either 10% (w/v), 12.5% (w/v) or 15% (w/v) polyacrylamide gels (27) and transferred to nitrocellulose membranes as described (28). Antibodies raised against PfilB (1: 3000) (4), a FocA peptide (1:500) (3), or purified FocA (1:3000) were used. Secondary antibody conjugated to horseradish peroxidase was obtained from Bio-Rad. Visualisation was done by the enhanced chemiluminescent reaction (Stratagene).
terminally Strep-tagged FocA fusion protein was purified according to (3) and used to raise polyclonal antibodies in rabbits using the procedures of the company Seqlab (Germany).

Other methods. Analysis of *E. coli* fermentation products and the hypophosphite inhibition test were performed exactly as described (4). Determination of β-galactosidase enzyme activity was performed according to Miller (24). S1-nuclease protection analysis of the focA-pflB transcripts was performed exactly as described (16). Protein concentration was determined according to Lowry et al. (29). Densitometric analysis of the Western blots was performed using the ImageJ software from the National Institutes of Health (http:rsb.info.nih.gov/ij).

Results.

Correlation between the efficiency of focA translation and transcription of pflB. The translation initiation codon of the focA transcript is GUG (4). In a previous study with lacZ protein fusions it was shown that while conversion of the GUG codon to UUU or GUC prevented focA mRNA translation, conversion to an AUG codon increased expression approximately 10-fold (4). These changes in the focA translation initiation codon also affected expression of a focA-pflB-lacZ protein fusion significantly due to polarity effects: prevention of focA translation decreased pfl expression 20-30 fold, while improved efficiency of focA translation initiation led to an approximate 3-fold increase in pfl-lacZ expression. To examine the consequences of these changes on transcription of the focA-pflB operon, total RNA was isolated from a set of strains harbouring chromosomal mutations in the GUG codon of the focA gene. The strains were grown aerobically and anaerobically in rich medium and the isolated RNA was analysed by S1-nuclease mapping of the focA-pflB transcripts, performed as previously described (12, 16). As a control, the transcript pattern of wild type strain MC4100 was compared with that of the FocA’ mutant REK701, which has two consecutive stop codons within the focA gene (see Table 1), but has an unaltered GUG translation
initiation codon (4). Both strains exhibited similar transcript profiles (Fig. 1B), showing a clear anaerobic induction of transcription. The only differences in the transcript patterns were an additional transcript that was detected approximately halfway between transcripts 5 and 6 + 6a in REK701, possibly the result of a new processing site, and the intensity of both transcripts 5 and 6 was clearly less in the focA mutant compared to the wild type strain. On the other hand, transcripts 1 through 4 were of a similar intensity to the wild type (Fig. 1B).

This transcript profile contrasts markedly with that observed for the focA mutants REK700 (GUG converted to UUU) and REK703 (GUG converted to GUC), where translation of the focA transcript was prevented (Fig. 1B, lanes 5 through 9). In both mutants each transcript was reduced in intensity when RNA was isolated from anaerobically grown cells, and the intensity levels were comparable to that of the wild type after growth with oxygen, i.e. the uninduced level. This finding agrees well with previously reported effects of the mutations on pfl-lacZ expression levels (4). Because conversion of the GUG codon to either UUU or GUC resulted in essentially identical transcript patterns, this indicates that the strong polar effect on downstream transcript levels was probably due to prevention of focA mRNA translation, resulting in more rapid transcript turnover (4), and not to direct transcriptional regulation. To confirm this hypothesis, we analysed total RNA isolated from aerobically and anaerobically grown REK702 in which the GUG codon was converted to the more efficiently translated AUG codon. The results clearly show that, while the intensity of transcripts under aerobic conditions was similar to that in MC4100, the levels of transcripts after anaerobic growth were significantly increased (Fig. 1B, lanes 9 and 10). This was particularly apparent for transcripts 6+6a and 7, which are the transcripts that are translated to generate FocA.

Together, these results show that mutations affecting the translation initiation efficiency of focA strongly influence the levels of the processed focA-pflB operon transcripts, which are ultimately translated to generate PflB.
To demonstrate the consequences of these mutations on the amounts of FocA and PflB in anaerobically growing *E. coli* cells we performed western blot experiments with either purified membrane fractions to analyse FocA (3), or soluble fractions to assess the levels of PflB (21) (Fig. 2). FocA is a low-abundance membrane protein in MC4100 and is only observed under anaerobic conditions (3, 4, 13). Antibodies raised against full-length FocA identified a weak band in MC4100 that migrated at its characteristic aberrant molecular mass of 22 kD (3, 4, 7) and which was absent in membranes isolated from strain REK701 (Fig. 2A). Conversion of the GUG translation initiation codon of the *focA* gene to AUG resulted in an approximate 20-fold increase in FocA levels in the membrane fraction, as determined by densitometric scanning of the autoradiogram. No FocA protein could be detected in the membrane fractions of either strain REK700 (GUG to UUU) or REK703 (GUG to GUC), consistent with the lack of translation of the *focA* mRNA (Fig. 2B). It was noted that FocA synthesis was significantly increased in strain RM220, which has a deletion in the genes encoding PflB and its activating enzyme PflA (21), compared with wild type strain MC4100. Densitometric analysis of the blot revealed that the level of FocA in RM220 was approximately 5-fold lower than in REK702 (GUG to AUG). This result is consistent with the findings of previous transcriptional studies in which it was shown that increased levels of pyruvate in the cell cause increased expression of the *focA-pflB* operon as well as enhanced levels of PflB protein (11, 15).

To examine the consequences of the *focA* start codon mutations on PflB levels, we analysed soluble fractions of each strain by immunoblotting with antibodies raised against PflB (21). A soluble fraction derived from the *focA* mutant REK701 had similar levels of PflB to those observed in MC4100 (wild type) after anaerobic growth of cells (Fig. 2B). This result is consistent with previous findings (4) and indicates that as long as translation of the *focA* gene can be initiated there is a limited polar effect on PflB synthesis, despite the absence of a FocA protein due to the introduction of consecutive stop codons after codon 113 in *focA* (see Table...
This contrasts strongly with the situation when focA translation was impeded by mutation of the GUG codon to UUU (strain REK700) or GUC (strain REK703), where extracts revealed an approximate 10-fold reduction in PflB levels compared with the wild type (Fig. 2B). The negative controls RM220 and RM201, both of which carry deletions in the pflB gene (11, 21), completely lacked PflB antigen. Conversion of the GUG codon to AUG in focA (strain REK702) resulted in a 2- to 3-fold increase in PflB levels (Fig. 2B). This level was similar to that observed when the low copy-number plasmid p29 (30) carrying the complete focApflB operon was introduced into MC4100. This suggests that PflB levels cannot be over-produced above a certain level when pflB is co-expressed with focA.

Sensitivity towards hypophosphite correlates directly with FocA levels. In a previous study insertion mutations in the focA gene were identified based on an enhanced resistance to the formate analogue hypophosphite (4). Therefore, we used this assay to test whether the conversion of the GUG to an AUG codon resulted in enhanced sensitivity to hypophosphite. REK702 (GUG to AUG) was grown in minimal glucose medium containing 75 mM hypophosphite and the optical density of the anaerobic culture was monitored at 600 nm after 24 h incubation at 37 °C (Fig. 3). While REK702 showed similar growth to the wild type MC4100 in the absence of hypophosphite, it showed poorer growth in the presence of hypophosphite compared to MC4100. In contrast, strains REK700 (GUG to UUU), REK701 (Stop) and REK703 (GUG to GUC) showed better growth than the wild type, consistent with the lack of FocA (Fig. 3). These findings indicate that overproduction of FocA results in enhanced sensitivity to hypophosphite.

FocA is not limiting for formate translocation across the cytoplasmic membrane in E. coli during fermentation. To examine the consequences of increasing FocA levels on formate export and re-import by fermenting E. coli cells, we examined over a 14 h period the fermentation product spectrum of formate, pyruvate, lactate, succinate, and acetate during anaerobic growth in minimal medium with glucose as carbon source. Growth, as well as the
pH of the culture medium, was also monitored (Fig. 4). Formate started to accumulate in the medium of MC4100 cultures as soon as growth initiated, reaching a maximum of 9 mM OD$_{420}$-1 after 4 h (Fig. 4A), which equated to approximately mid-exponential phase of growth (Fig. 4B). Thereafter, formate levels in the culture medium steadily decreased and by 10 h all of the formate had been re-imported into the cells (Fig. 4A). The initiation of formate uptake roughly correlated with the decrease in the pH of the culture, which finally stabilized at pH 6.2 after 14 h (Fig. 4B). Of the five fermentation products monitored throughout growth, only formate was reimported from the culture medium. Acetate levels steadily increased from 5 to 8 mM OD$_{420}$-1, while succinate also slowly attained levels of 1 mM OD$_{420}$-1. In contrast, pyruvate and lactate remained at a low, barely detectable level (Fig. 4A).

Surprisingly, the fermentation product profile of strain REK702 was almost indistinguishable from that of MC4100 (Fig. 4C). Moreover, the growth curve and pH profile were also essentially superimposable (Fig. 4D). This result indicates that FocA is not limiting in wild type E. coli cells with respect to formate translocation. Moreover, despite the increase in PfIB levels in REK702 this had no influence on formate production, indicating that PfIB levels are also not growth-limiting in fermenting E. coli cells.

The absence of FocA had a marked effect on the fermentation product profile of strain REK703 (GUG to GUC). Firstly, approximately only half the amount of formate was secreted into the culture medium compared with MC4100 (Fig. 4E). Nevertheless, despite the fact that REK703 showed an approximately 10-fold reduced level of PfIB (see Fig. 2B), it still produced significant amounts of formate. Earlier studies demonstrated that E. coli has a second, as yet unidentified, system for exporting formate (30). The high levels of lactate production from mid-exponential growth phase continuing into the stationary growth phase indicate, however, that all of the pyruvate derived from glucose could not be metabolized by PfIB and the excess was reduced and exported as lactate. This correlates also with the lower pH of 5.4 in the growth medium of REK703 (Fig. 4F). Notably, the profiles of both acetate
and succinate remained similar to those of MC4100 (Fig. 4E). The fermentation product profile of strain REK700 (GUG to UUU) was indistinguishable from that of strain REK703 (data not shown).

The inability to metabolize formate hinders import of extracellular formate. A mutant lacking any of the sel gene products fails to synthesize the selenocysteine-containing FDHs (31, 32). In order to assess whether the ability of the strain to metabolize formate affected formate export or import, we examined the fermentation product profile of a selC mutant after growth in glucose minimal medium (Fig. 5A). Formate was secreted into the culture medium at a similar stage of growth as seen for wild type. Despite the presence of FocA, however, formate was not re-imported and it accumulated in the culture medium to levels nearing 20 mM OD\textsubscript{420}-1. While the acetate and succinate profiles of strain FM460 were similar to those of MC4100, lactate was exported during the late exponential phase of growth, accumulating to 10 mM OD\textsubscript{420}-1 (Fig. 5A). This caused the pH of the culture medium to decrease to 5.5 in the late exponential phase growth (Fig. 5B). Otherwise, the growth curve was similar to that of MC4100.

To ensure that the observed lack of formate import by strain FM460 was solely due to the lack of FDHs and not caused by a secondary consequence of the selC mutation, we analysed the fermentation product spectrum of strain WL308, which lacks the fdhD and fdhE genes and thus cannot synthesize active formate dehydrogenases (20, 22, 33). Like the selC mutant, strain WL308 failed to re-import formate (Fig. 5C), while acetate and succinate levels remained similar to those of the wild type. The level of formate exported was marginally lower than that exported by FM460; however, this might be due to the poorer growth exhibited by WL308 (Fig. 5D). The reason for the poorer growth under these conditions is currently unclear.

Discussion.
The recent important discovery that purified FocA in reconstituted planar lipid bilayers translocates not only formate but also other monovalent anionic products of mixed-acid fermentation such as acetate, lactate and pyruvate (10), led to the suggestion that FocA might perform the same function in vivo. The findings of this study suggest, however, that while formate is both exported and re-imported by FocA in fermenting E. coli cells, lactate, acetate and succinate export did not show the same correlation with FocA in vivo. Moreover, succinate, acetate and lactate steadily accumulated in the medium suggesting that they were not taken up by E. coli cells under the conditions analyzed. Increasing the levels of FocA in anaerobic cells or prevention of FocA synthesis had no effect on the levels or kinetics of export of either acetate or succinate in comparison to the wild type. Indeed, lactate export was increased in focA mutants, presumably because pyruvate was reduced by lactate dehydrogenase, even though PflB was present. Taken together, these data suggest that FocA is a formate-specific channel in vivo. These findings raise the question as to how selectivity toward formate is achieved in vivo. One possibility is that there is pH-dependent gating of the FocA channel, as has been previously suggested (6, 7). However, this would presumably have to be highly localized to account for the fact that the cytoplasmic pH is generally maintained near neutrality. An alternative possibility is that the substrate selectivity of FocA is determined by an interaction partner. Studies to determine whether either of these possibilities can explain formate selectivity are currently being undertaken.

The chloride, nitrite and hypophosphite anions were also shown recently to be translocated though FocA in vitro (9). Although no conclusions regarding nitrite and chloride translocation by FocA in vivo could be drawn from the current study, it was clearly shown that conversion of the GUG translation initiation codon to the more efficient AUG resulted in enhanced sensitivity of REK702 to sodium hypophosphite, while mutants lacking FocA were more resistant to hypophosphite compared to either REK702 or MC4100 (wild type). This confirms a previous observation (4) that FocA is effective at taking up hypophosphite. With a pK_a of
1.1 Hypophosphite is essentially always present as the anion at neutral pH, and therefore requires transport into *E. coli* cells. Clearly, FocA is one of the main routes by which hypophosphite enters cells. The increased hypophosphite-sensitivity of REK702 correlated well with the increased amount of FocA in the cell compared to the wild type. Through the use of specific antibodies we could show that FocA levels were increased roughly 20-fold when the GUG codon was converted to AUG on the chromosome, which agrees reasonably well with results of previous *focA-lacZ* fusion studies (4). Notably, despite the increased level of FocA in strain REK702 the amount of formate exported by the strain remained unaffected, indicating that the roughly 100 FocA pentamers calculated to be present in anaerobically growing *E. coli* cells (3) was not limiting with regard to either formate export or import. The increased levels of FocA apparently also had no significant effect on the levels of mixed-acid fermentation products generated by *E. coli*. Moreover, analysis of *focApflB* transcript levels, *pflB-lacZ* expression data (4), and immunological studies demonstrated that PflB levels were also increased roughly 3-fold in REK702. Despite this increase in PflB synthesis, no significant effect on the fermentative metabolism of the strain was apparent, which indicates that PflB is also not limiting in the anaerobic cell. Additionally, the strong polar effect caused by prevention of *focA* translation, through mutation of the translation initiation codon to either UUU or GUC, on downstream *pflB* expression resulted in a 10- to 20-fold reduction in the intracellular levels of PflB. Nonetheless, formate was still synthesized, albeit in significantly reduced amounts compared to the wild type, which also agreed with reduced hydrogen production by REK700 and REK703 (B. Suppmann and R.G. Sawers, unpublished data). This data indicates that *E. coli* can adapt its metabolism to ensure glycolytic flux is maintained, even when the level of PflB varies considerably; however, this impacts on formate excretion and uptake.

Finally, the effect of preventing intracellular or periplasmic utilization of formate by blocking the selenocysteine biosynthesis pathway (20, 32) or preventing maturation of the formate
dehydrogenases demonstrated that formate, once exported, remained in the growth medium. While perhaps not unexpected, this result is in accord with the function of a channel and provides *E. coli* with an elegant mechanism to allow substrate access to either side of the membrane: if an electron acceptor is present then formate can preferentially be oxidized by the energy-conserving, periplasmically-oriented FDH-O or FDH-N enzymes (2, 18); if no acceptor is available, formate can be re-imported and disproportionated to dihydrogen and carbon dioxide by the formate hydrogenlyase complex, thus offsetting acidification of the cytoplasm. Notably, the same result was observed for strains REK701 (stop codon within focA) and REK703 (GUG to GTC) when the selC allele was introduced (data not shown), which also suggests that the unidentified protein responsible for formate translocation in the absence of FocA exhibits channel-like activity. Construction of focA nirC double null mutants have demonstrated that NirC is not responsible for residual formate translocation in focA mutants (L. Beyer, B. Suppmann and R.G. Sawers, unpublished data). Because energy conservation is a premium during fermentation a channel-based translocation system tightly coupled to intracellular metabolism of formate, together with an acidic environment outside the cell, provides the driving force for formate import. This system is also poised perfectly by the corresponding K_M values of the formate dehydrogenases and the formate-dependent transcriptional regulator FhlA for formate so that substrate is initially offered for respiration and only once it accumulates is it reimported and disproportionated to CO$_2$ and H$_2$ by the formate hydrogenlyase complex (1, 34). Reimport of formate initiates in the late exponential phase of growth and appears to show an inverse correlation with PfIB activity (1, 2, 34).

The widespread occurrence of FNT channels with specificity for different monovalent anionic substrates, especially amongst anaerobes, suggests that these evolutionarily ancient membrane proteins might provide an effective means of energy-independent, pH-driven substrate translocation.
Acknowledgements.

This work was supported by the GRK1026 (Conformational transitions in macromolecular interactions) from the Deutsche Forschungsgemeinschaft and by the ‘Exzellenzinitiative’ of the region of Saxony-Anhalt.

References.

33. **Schlindwein C, Giordano G, Santini CL, Mandrand MA.** 1990. Identification and expression of the *Escherichia coli* *fdhD* and *fdhE* genes, which are involved in the formation of respiratory formate dehydrogenase. J. Bacteriol. **172**:6112–6121.

Table 1. Strains used in this study

<table>
<thead>
<tr>
<th>Strains/ phage</th>
<th>Genotype</th>
<th>Reference/ Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC4100</td>
<td>F araD139 Δ(argF-lac)U169 ptsF25 deoC1 relA1 flbB5301 rpsL150<sup>−</sup></td>
<td>(19)</td>
</tr>
<tr>
<td>FM460</td>
<td>Like MC4100 but ΔselC400:: Kan<sup>R</sup></td>
<td>(20)</td>
</tr>
<tr>
<td>RM201</td>
<td>Like MC4100 but Δpfl-25 Ω<sup>−</sup></td>
<td>(11)</td>
</tr>
<tr>
<td>RM220</td>
<td>Like MC4100 but ΔpflB-pflA</td>
<td>(21)</td>
</tr>
<tr>
<td>REK700</td>
<td>Like MC4100 but focA (GUG codon of focA converted to UUU)</td>
<td>(4)</td>
</tr>
<tr>
<td>REK701</td>
<td>Like MC4100 but focA (focA codons 114 and 115 changed to UAG and UAA, respectively)</td>
<td>(4)</td>
</tr>
<tr>
<td>REK702</td>
<td>Like MC4100 but focA (GUG codon of focA converted to AUG)</td>
<td>(4)</td>
</tr>
<tr>
<td>REK703</td>
<td>Like MC4100 but focA (GUG codon of focA converted to GUC)</td>
<td>(4)</td>
</tr>
<tr>
<td>SEC702</td>
<td>Like REK702 but selC400:: Kan<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>SEC703</td>
<td>Like REK703 but selC400:: Kan<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>WL308</td>
<td>Like MC4100 but Δ(fdhD-fdhE):: Mudl(Ap<sup>+</sup> lac)</td>
<td>(22)</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Transcriptional polarity within the focA-pflB operon caused by alterations in the focA translational initiation codon. A. Schematic representation of the focA-pflB operon. The angled arrows labelled 1 through 7 represent the locations of the 5' ends of transcripts. The 32P-labelled DNA probe used for the S1-nuclease mapping experiment shown in B is depicted below the operon and the asterisk indicated the labelled end. B. Autoradiogram of a S1-nuclease protection assay of total RNA (50 μg) isolated from strains grown aerobically (+) or anaerobically (-) and hybridized with the single-stranded, labelled focA-pflB' DNA probe shown in part A. The samples were separated on a denaturing polyacrylamide gel (4% w/v) and after drying the gel was exposed to X-ray film as described (12). The total RNA was isolated from the following strains: MC4100 (Wt); REK701 (FocA-); REK700 (TTT); REK703 (GTC); REK702 (ATG). The locations of the respective 5' ends of the focA-pflB transcripts depicted in part A are shown in the right of the panel, while the migration positions of DNA size markers are indicated on the left of the panel.

Figure 2. The influence of various focA mutations on anaerobic FocA and PflB synthesis. Membrane fractions (50 μg of protein) or soluble fractions (30 μg of protein) prepared from the indicated strains were separated on 15% (w/v) or 10% (w/v) SDS-polyacrylamide gels, respectively. After transfer to a nitrocellulose membrane, the filters were probed with antiserum raised against E. coli FocA peptide (amino acids 141–159: 3) (upper panel in A), FocA (lower panel in A), or PflB (B). In the lower panel of A the samples were run on a 12.5% (w/v) polyacrylamide gel and the autoradiogram was exposed for twice the length of time compared with others to visualize FocA in MC4100 (identified by the arrow). The strains used to generate the sub-cellular fractions are indicated above the respective lanes. Purified, N-terminally Strep-tagged FocA (80 ng) was used as control in A. Plasmid p29 carries the complete focA-pflB operon on a multicopy plasmid. The migration positions of molecular mass markers are indicated on the left and the migration positions of FocA or PflB...
are indicated on the right of the figure. The asterisks denote unidentified cross-reacting polypeptides that acted as loading controls in each experiment.

Figure 3. Increased FocA synthesis results in enhanced sensitivity of strains to hypophosphite. The indicated strains were grown anaerobically for 24 h at 37 °C in WM-medium pH 6.8 with glucose as the carbon source, either in the absence (grey bars) or presence (white bars) of 75 mM sodium hypophosphite. The optical densities of three independent cultures were determined. The growth rate of MC4100 in the presence of 75 mM hypophosphite was 0.115 h\(^{-1}\) and REK702 was 0.069 h\(^{-1}\). Both had comparable growth rate of 0.34 h\(^{-1}\) in the absence of hypophosphite.

Figure 4. Fermentation product spectra of focA translation initiation codon mutants. MC4100 (A and B), REK702 (C and D) and REK703 (E and F) were cultured in WM-medium pH 6.8 with glucose as carbon source and the organic acids were extracted from the culture medium at the time points indicated and quantified by HPLC analysis (4). In panels A, C and E the symbols are as follows; filled squares, formate; open squares, succinate; filled triangles, acetate; open circles, pyruvate; open diamonds, lactate. The concentration of each metabolite was calculated with respect to the optical density of the culture. Panels B, D and F show the corresponding growth curves of the strains and the pH of the culture medium during growth.

Figure 5. Defects in formate dehydrogenase synthesis prevent re-import of formate. FM460 (selC) (A and B) and WL308 (FDH\(^{-}\)) (C and D) were cultured in WM-medium pH 6.8 with glucose as carbon source and the organic acids (panels A and C) and growth and pH (panels B and D) were analyzed as described in the legend to Figure 4. In panels A and C the symbols are as follows; filled squares, formate; open squares, succinate; filled triangles, acetate; open circles, pyruvate; open diamonds, lactate.
Figure 1

A.

\[\text{focA} \rightarrow \text{pflB} \]

\[7 \quad 6+6a \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \]

S1 nuclease probe

B.

WT [FocA] [TTT] [GTC] [ATG]

\[+ \quad O_2 \]

1631 bp

* 7 6+6a 5 4 3 2 1

517 bp 506 bp
Figure 3

[Bar chart showing OD at 600 nm for different strains: MC4100, REK700, REK701, REK702, REK703.]

Figure 4
Figure 5

A

B

C

D

Product concentration [mM] vs. time [h]

OD_600

pH

OD_600

pH