Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Bacteriology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
    • JB Special Collection
    • JB Classic Spotlights
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About JB
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.

M R Atkinson, L V Wray, Jr, S H Fisher
M R Atkinson
Department of Microbiology, Boston University School of Medicine, Massachusetts 02118.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L V Wray
Department of Microbiology, Boston University School of Medicine, Massachusetts 02118.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S H Fisher
Department of Microbiology, Boston University School of Medicine, Massachusetts 02118.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/jb.172.9.4758-4765.1990
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The first enzymes of the histidine (hut) and proline degradative pathways, histidase and proline oxidase, could not be induced in Bacillus subtilis cells growing in glucose minimal medium containing a mixture of 16 amino acids. Addition of the 16-amino-acid mixture to induced wild-type cells growing in citrate minimal medium repressed histidase synthesis 25- to 250-fold and proline oxidase synthesis 16-fold. A strain containing a transcriptional fusion of the hut promoter to the beta-galactosidase gene was isolated from a library of Tn917-lacZ transpositions. Examination of histidase and beta-galactosidase expression in extracts of a hut-lacZ fusion strain grown in various media showed that induction, catabolite repression, and amino acid repression of the hut operon were mediated at the level of transcription. This result was confirmed by measurement of the steady-state level of hut RNA in cells grown in various media. Since amino acid repression was not defective in B. subtilis mutants deficient in nitrogen regulation of glutamine synthetase and catabolite repression, amino acid repression appears to be mediated by a system that functions independently of these regulatory systems.

PreviousNext
Back to top
Download PDF
Citation Tools
Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
M R Atkinson, L V Wray Jr, S H Fisher
Journal of Bacteriology Sep 1990, 172 (9) 4758-4765; DOI: 10.1128/jb.172.9.4758-4765.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Journal of Bacteriology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
(Your Name) has forwarded a page to you from Journal of Bacteriology
(Your Name) thought you would be interested in this article in Journal of Bacteriology.
Share
Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis.
M R Atkinson, L V Wray Jr, S H Fisher
Journal of Bacteriology Sep 1990, 172 (9) 4758-4765; DOI: 10.1128/jb.172.9.4758-4765.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About JB
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #Jbacteriology

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0021-9193; Online ISSN: 1098-5530